Crops ›› 2021, Vol. 37 ›› Issue (4): 118-122.doi: 10.16035/j.issn.1001-7283.2021.04.018

Previous Articles     Next Articles

Effects of Nitrogen Fertilizer on Yield and Nitrogen Use Characteristics in Waxy Sorghum Cultivar "Hongyingzi"

Gao Jie1(), Feng Guangcai2, Li Xiaorong3, Li Qingfeng1, Wang Can1, Zhang Guobing1, Zhou Lengbo1, Peng Qiu1()   

  1. 1Guizhou Institute of Upland Crops/Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China
    2Poverty Alleviation and Development Office of Qiandongnan Prefecture, Kaili 556000, Guizhou, China
    3Chuxiong Autonomous Prefecture Academy of Agricultural Sciences, Chuxiong 675000, Yunnan, China
  • Received:2020-07-10 Revised:2020-10-27 Online:2021-08-15 Published:2021-08-13
  • Contact: Peng Qiu E-mail:gaojie396300520@163.com;p5615@sina.com

Abstract:

To explore the high-efficiency utilization technology of nitrogen fertilizer in waxy sorghum in Guizhou, the yield, nitrogen uptake and utilization characteristics of waxy sorghum cultivar “Hongyingzi” were studied with different nitrogen applications rates (0, 120, 240, 360, 480 and 600kg/ha), numbered N0, N120, N240, N360, N480, and N600. The results showed that the yield, dry matter accumulation, and nitrogen accumulation presented the trend of increasing first and then decreasing with the increase of nitrogen application rates. Compared with the N0, the yield, dry matter accumulation, and nitrogen accumulation of N- application treatments significantly increased, while the treatment of N240 had the highest increase, increasing by 28.87%, 35.83%, and 49.62%, respectively. With the increasing of nitrogen application rate, nitrogen apparent recovery, nitrogen fertilizer efficiency, nitrogen recovery efficiency, nitrogen partial fertilizer productivity, and value cost ratio decreased. The quadratic polynomial and square root model were used to fit the effects of nitrogen application on yield and benefit of waxy sorghum and the highest yield was obtained by nitrogen application rates 294.5 and 252.6kg/ha, respectively. The maximum benefit was obtained by nitrogen application rates 168.2 and 132.7kg/ha. In consideration of yield, benefit, and nitrogen use efficiency, it was reasonable to apply 120-240kg/ha nitrogen fertilizer under the experimental conditions.

Key words: Waxy sorghum, Yield, Dry matter accumulation, Nitrogen use efficiency

Fig.1

Effects of different nitrogen levels on yield, DMA, and TNA of waxy sorghum Different letters mean significant differences (P < 0.05)"

Table 1

Effects of different nitrogen levels on nitrogen utilization parameters of waxy sorghum"

处理 Treatment NHI (%) NUE (kg/kg) NDMPE (kg/kg DM) NAE (kg/kg DM) NRE (%) NPFP (kg/kg) NARR (%) NFAE (kg/kg)
N0 47.93b 27.40a 92.24a
N120 49.84b 24.86b 87.71b 29.59a 39.66a 38.38a 154.37a 6.94a
N240 52.55a 23.60bc 83.74cd 18.96b 28.46b 20.25b 85.82b 4.54b
N360 49.91b 23.19bc 86.17b 9.23c 13.41c 12.42c 51.65c 1.94c
N480 48.94b 23.14bc 84.20c 5.51d 9.28d 8.78d 37.96d 0.93cd
N600 48.64b 22.53c 81.69d 2.94e 6.56e 6.65e 29.50e 0.36d

Table 2

Benefit of waxy sorghum under different nitrogen application levels"

处理Treatment 产量
Yield
(kg/hm2)
产值 (元/hm2)
Output value
(yuan/hm2)
肥料投入 (元/hm2)
Fertilizer input
(yuan/hm2)
净利润 (元/hm2)
Net profit (yuan/hm2)
氮平衡
N balance
(kg/hm2)
增收 (元/hm2)
Increased income
(yuan/hm2)
产投比
Value cost ratio
N0 3 772.22c 22 633.33c 1 302.75 21 330.58 -137.66
N120 4 605.56a 27 633.33a 1 824.75 25 808.58 -65.25 4 478.00 2.45
N240 4 861.11a 29 166.67a 2 346.75 26 819.92 34.03 5 489.33 2.34
N360 4 472.22b 26 833.33b 2 868.75 23 964.58 175.74 2 634.00 0.92
N480 4 216.67b 25 300.00b 3 390.75 21 909.25 297.78 578.67 0.17
N600 3 988.89c 23 933.33c 3 912.75 20 020.58 422.98 -1 310.00 -0.33

Table 3

R2, effect model and optimum nitrogen rate of different modes"

产出 Production 模型Model 效应方程 Effect model 决定系数 R2 最佳施氮量 Optimum N rate (kg/hm2)
产量 Yield 二次多项式 y=3915.67+5.36x-0.0091x2 0.7901** 294.5
平方根 y=22191.29+27.79x-0.055x2 0.8270** 252.6
净利润 Net profit 二次多项式 y=3760.56+149.66x0.5-5.77x 0.9458** 168.2
平方根 y=21260.61+897.96x0.5-38.98x 0.9948** 132.7
[1] 王伟妮, 鲁剑巍, 李银水, 等. 当前生产条件下不同作物施肥效果和肥料贡献率研究. 中国农业科学, 2010,43(19):3997-4007.
[2] 吴永常, 王道龙. 中国主要粮食作物单产变化趋势及中长期预测. 中国农业资源与区划, 2002,23(1):20-25.
[3] 奚振邦. 关于化肥对作物产量贡献的评估问题. 磷肥与复肥, 2004,19(3):68-71.
[4] 王成, 王劲松, 丁玉川, 等. 不同高粱基因型对氮磷钾缺乏的生物学响应. 山西农业科学, 2015,43(9):1133-1137.
[5] 梁晓红, 刘静, 曹雄. 施氮量对酿造高粱产量和氮素利用率的影响. 华北农学报, 2017,32(2):179-184.
[6] 陈新平, 周金池, 王兴仁, 等. 小麦-玉米轮作制中氮肥效应模型的选择——经济和环境效益分析. 土壤学报, 2000(3):346-354.
[7] 王宏庭, 赵萍萍, 郭军玲, 等. 不同施氮运筹对夏玉米产量、净收益及氮肥利用率的影响. 山西农业科学, 2010,38(10):30-33.
[8] 陈同斌, 曾希柏, 胡清秀. 中国化肥利用率的区域分异. 地理学报, 2002,57(5):531-538.
[9] William P H. The role of fertilizers in environmental pollution. Proceedings of the International Symposium on Nutrient Management for Sustained Productivity. Ludhiana,India:Punjab Agricultural University, 1992: 195-215.
[10] Jaynes D B, Colvin T S, Karlen D L, et al. Nitrate loss in subsurface drainage as affected by nitrogen fertilizer rate. Journal of Environmental Quality, 2001,30(4):1305-1314.
[11] 王宜伦, 韩燕来, 张许, 等. 氮磷钾配比对高产夏玉米产量、养分吸收积累的影响. 玉米科学, 2009,17(6):88-92.
[12] 王劲松, 焦晓燕, 丁玉川, 等. 粒用高粱养分吸收、产量及品质对氮磷钾营养的响应. 作物学报, 2015,41(8):1269-1278.
[13] 周棱波, 汪灿, 陆秀娟, 等. 施肥量和种植密度对糯高粱黔高7号光合特性、农艺性状及产量的影响. 南方农业学报, 2016,47(5):644-648.
[14] Marsalis M A, Angadi S V, Contrerasgovea F E. Dry matter yield and nutritive value of corn,forage sorghum,and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Research, 2010,116(1/2):52-57.
[15] Almodares A, Taheri R, Hadi M R, et al. The effect of nitrogen and potassium fertilizers on the growth parameters and the yield components of two sweet sorghum cultivars. Pakistan Journal of Biological Sciences, 2006,9(12):2350-2353.
[16] 尹新华, 曹翠玉. 夏高粱对氮磷钾吸收规律的初步研究. 南京农业大学学报, 1992,15(3):128-130.
[17] 高杰, 李青风, 汪灿, 等. 不同氮素水平对糯高粱物质生产及氮素利用特性的影响. 作物杂志, 2017(6):1-4.
[18] 赵益强, 徐晓峰, 吕智敏. 不同施肥水平对高粱性状影响的初步研究. 西昌农业高等专科学校学报, 2003,17(4):12-15.
[19] 董二伟, 王劲松, 韩鹏远, 等. 施肥对高粱生长、干物质积累与养分吸收分配的影响. 山西农业科学, 2012,40(6):645-650.
[20] 陈富忠, 吴永红, 郑邦元. 氮磷钾肥对高粱产量和效益的影响试验初报. 南方农业, 2014,8(31):18-19.
[21] 曹雄, 梁晓红, 黄敏佳, 等. 酿造高粱肥料高效利用研究. 中国农学通报, 2015,31(27):99-103.
[22] 刘天朋, 赵甘霖, 倪先林, 等. 播期和施氮量对杂交糯高粱生育期及产量的影响. 湖北农业科学, 2013,52(15):3498-3500.
[23] 李亚静, 郭振清, 杨敏, 等. 施氮量对强筋小麦氮素积累和氮肥农学利用效率的影响. 麦类作物学报, 2020,40(3):343-350.
[24] 石玉, 于振文, 王东, 等. 施氮量和底追比例对小麦氮素吸收转运及产量的影响. 作物学报, 2006,32(12):1860-1866.
[25] 吕鹏, 张吉旺, 刘伟, 等. 施氮量对超高产夏玉米产量及氮素吸收利用的影响. 植物营养与肥料学报, 2011,17(4):852-860.
[26] 吕丽华, 陶洪斌, 王璞, 等. 施氮量对夏玉米碳、氮代谢和氮利用效率的影响. 植物营养与肥料学报, 2008,14(4):630-637.
[27] 渠晖, 陈俊峰, 程亮, 等. 施氮水平对甜高粱硝酸盐含量和氮素利用特性的影响. 草业学报, 2016,25(7):168-176.
[28] 李学斌, 陈林, 田真, 等. 荒漠草原典型植物群落枯落物蓄积量及其持水性能. 水土保持学报, 2011,25(6):144-147.
[29] 王兴仁, 陈新平, 张福锁, 等. 施肥模型在我国推荐施肥中的应用. 植物营养与肥料报, 1998,4(1):67-74.
[30] 毛达如, 张承东. 推荐施肥技术中施肥模型与试验设计的研究. 土壤通报, 1991,22(5):216-218.
[31] Cerrato M E, Blackmer A M. Comparison of models for describing:corn yield response to nitrogen fertilizer. Agronomy Journal, 1990,82(1):138-143.
[32] 赵营, 同延安, 赵护兵. 不同供氮水平对夏玉米养分累积、转运及产量的影响. 植物营养与肥料学报, 2006,12(5):622-627.
[33] Novoa R, Loomis R S. Nitrogen and plant production. Plant Soil, 1981,58:177-204.
[34] 易镇邪, 王璞, 申丽霞, 等. 不同类型氮肥对夏玉米氮素累积、转运与氮肥利用的影响. 作物学报, 2006,32(5):772-778.
[35] 江立庚, 曹卫星, 甘秀琴, 等. 不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响. 中国农业科学, 2004,37(4):490-496.
[36] Dobermann A, Cassman K G. Plant nutrient management for enhanced productivity in intensive grain production systems of the United States and Asia. Plant Soil, 2002,247(1):153-175.
[37] Eagle A J, Bird J A, Horwath W R, et al. Rice yield and nitrogen utilization efficiency under alternative straw management practices. Agronomy Journal, 2000,92(6):1096-1103.
[38] Dobermann A, Dawe D, Roetter R P, et al. Reversal of rice yield decline in a long-term continuous cropping experiment. Agronomy Journal, 2000,92(4):633-643.
[1] Pan Gaofeng, Wang Benfu, Chen Bo, Fang Zhenbing, Zhao Shasha, Tian Yonghong. Effects of Seeding Date on Yield, Growth Period and Utilization of Temperature and Sunshine of Different Types of Japonica Rice in North Central of Hubei Province [J]. Crops, 2021, 37(4): 105-111.
[2] Tong Tianyi, Cai Jianxuan, Zhang Jisheng, Li Lin, Ma Lin, He Roujing, Tang Xiangru. Effects of Fertilizer Types on Yield, Quality and Aroma of Fragrant Rice [J]. Crops, 2021, 37(4): 152-158.
[3] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[4] Wu Ke, Xie Huimin, Liu Wenqi, Mo Bingmao, Wei Guoliang, Lu Xian, Li Zhuanglin, Deng Senxia, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Nitrogen, Phosphorus and Potassium Fertilizer on Rice Grain Yield and Yield Components in Double Cropping Rice Area of Southern China [J]. Crops, 2021, 37(4): 178-183.
[5] Wang Zhihua, Zhang Lingyun, Wei Lixing. Comparison Test of Different Triticale Varieties in Winter Fallow Saline Farmland [J]. Crops, 2021, 37(4): 191-195.
[6] Liu Tianhao, Zhang Yifei, Wang Huaipeng, Yang Kejun, Zhang Jinsong, Sun Yishan, Xiao Shanshan, Xu Rongqiong, Du Jiarui, Li Jiayu, Peng Cheng, Wang Baosheng. Regulating Effects of Foliar Spraying Silicon Fertilizer on Dry Matter Accumulation and Translocation, Grain Yield and Quality of Maize in Cold Region [J]. Crops, 2021, 37(4): 112-117.
[7] Liu Xuetong, Zheng Chunlian, Cao Wei, Dang Hongkai, Cao Caiyun, Li Xiaoshuang, Li Kejiang, Ma Junyong. Effects of Long-Term Located Fertilization on Soil Organic Matter, Nitrogen Forms and Crop Yields [J]. Crops, 2021, 37(4): 130-135.
[8] Liang Qian, Wu Qingshan, Ge Junzhu, Wu Xidong, Yang Yong’an, Hou Haipeng, Zhang Yao, Ma Zhiqi. Effects of Sowing Date on Rain-Fed Summer Maize Yield Formation and Resource Utilization in North China Plain [J]. Crops, 2021, 37(4): 136-143.
[9] Zhao Baoping, Liu Jinghui, Ren Changzhong. Research Progress of Physiological Mechanism of Yield Formation in Oats [J]. Crops, 2021, 37(3): 1-7.
[10] Wu Zhifeng, Liu Kaili, Le Lihong, Chen Zhongping, Tang Shuangqin, Li Zujun, Han Ruicai, Zeng Yanhua, Zeng Yongjun, Pan Xiaohua, Shi Qinghua, Wu Ziming. Study on Relieving Cold Stress of Direct-Seeded Late Rice at Heading Stage by Chemical Control [J]. Crops, 2021, 37(3): 114-119.
[11] Chen Chengli, Wang Jing, Fu Quanshan, Hou Zhenwu, Jiang Weifeng, Li Liping, Guo Shuyang, Rao Chaoqi, Fu Yunpeng. Effects of Transplanting Dates and Mulching Methods on Dry Matter Accumulation and Economic Characteristics of Dark Sun-Cured Tobacco in Jiaohe [J]. Crops, 2021, 37(3): 126-132.
[12] Zhang Jie, Chen Xin, Gao Fangfang, Ma Yajun, Liu Yanyan, Wu Cainü. Effects of Increased Application of Bio-Organic Fertilizer on Yield and Quality of Red Kidney Bean [J]. Crops, 2021, 37(3): 161-166.
[13] Meng Xiangyu, Ran Cheng, Liu Baolong, Zhao Zhexuan, Bai Jingjing, Geng Yanqiu. Effects of Straw Returning to Field and Nitrogen Application on Soil Nutrients and Rice Yield in Black Soil Areas of Northeast China [J]. Crops, 2021, 37(3): 167-172.
[14] Zhao Xuanwei, Zhao Yajie, Tian Zhendong, Hu Shuping, Zhao Rong, Ren Yaning, Bao Haizhu, Gao Julin. Response of Dry Matter Transportion and Yield to Sowing Date and Planting Density on Sunflower [J]. Crops, 2021, 37(3): 185-189.
[15] Chu Guanghong, Zhang Jianxin, Wang Cong, Zhao Zhanying. Effects of Topping at Different Nodes at Seedling Stage on Root Growth and Yield of High-Yield Spring Soybean [J]. Crops, 2021, 37(3): 195-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!