Crops ›› 2021, Vol. 37 ›› Issue (5): 72-78.doi: 10.16035/j.issn.1001-7283.2021.05.011

Previous Articles     Next Articles

Construction of SSR Fingerprint and Analysis of Genetic Diversity of Sugar Beet Varieties

Ding Liuhuizi(), Pi Zhi, Wu Zedong()   

  1. College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Received:2020-11-03 Revised:2020-11-23 Online:2021-10-15 Published:2021-10-14
  • Contact: Wu Zedong E-mail:ding1012063555@163.com;1997009@hlju.edu.cn

Abstract:

The 20 pairs of SSR primers with high polymorphism, clear bands, and good repeatability were screened for PCR amplification of the tested varieties and the SSR fingerprint database was constructed according to the amplified products, and their genetic diversity was analyzed. The results showed that 112 alleles were detected with an average of 5.6 for each pair of primers. The obtained alleles were used to calculate the genetic distance and the variation range of the genetic distance among 107 varieties was 0.065-0.467 with an average genetic distance of 0.298. Shannon's diversity index variation ranged from 0.78 to 2.90. PIC values were between 0.08 and 0.83. The Nei's indexes were between 0.39 and 1.87. Cluster analysis by UPGMA could divide 107 sugar beet varieties into two groups. Group I included 29 varieties and group II included 78 varieties. Group I and II could be divided into several subgroups. The results indicated that each sugar beet variety had a unique digital fingerprint that was different from other varieties indicating that the 20 pairs of SSR markers used in the experiment were suitable for the identification of the authenticity of sugar beet varieties. Meanwhile, the establishment of the beet variety fingerprint database also laid a solid technical foundation for the identification of sugar beet variety.

Key words: Sugar beet, SSR markers, Fingerprints, Cultivars identification

Table 1

Tested sugar beet varieties and sources"

序号
Number
品种
Variety
来源
Source
序号
Number
品种
Variety
来源
Source
1 KWS3410 KWS SAAT SE(德国) 48 CH0612 SES Vander Have(荷兰)
2 KWS4502 KWS SAAT SE(德国) 49 H004 SES Vander Have(荷兰)
3 ZT6 张掖市农业科学研究所(中国) 50 RG7002 麦瑞博国际种业有限公司(丹麦)
4 KUHN1277 SES Vander Have(荷兰) 51 RG7001 麦瑞博国际种业有限公司(丹麦)
5 KWS3935 KWS SAAT SE(德国) 52 MK4062 SES Vander Have(荷兰)
6 SV2085 SES Vander Have(荷兰) 53 甘糖7号 武威三农种业科技有限公司(中国)
7 KWS3354 KWS SAAT SE(德国) 54 Flores MariboHilleshög ApS(丹麦)
8 KWS3928 KWS SAAT SE(德国) 55 SR-411 SES Vander Have(荷兰)
9 BTS2860 BETASEED公司(美国) 56 SD13829 STRUBE GmbH & Co.KG(德国)
10 KUHN1125 SES Vander Have(荷兰) 57 ST13929 STRUBE GmbH & Co.KG(德国)
11 金谷糖BETA218 BETASEED公司(美国) 58 GGR1609 BETASEED公司(美国)
12 HI0479 MariboHilleshög ApS(丹麦) 59 H6X02 SES Vander Have(荷兰)
13 HI0474 MariboHilleshög ApS(丹麦) 60 AK3018 V-Field Agro-Tech B.V(荷兰)
14 HI1003 MariboHilleshög ApS(丹麦) 61 LS1321 莱恩种业(英国)
15 HI1059 MariboHilleshög ApS(丹麦) 62 LS1210 莱恩公司(英国)
16 SV1555 SES Vander Have(荷兰) 63 ADV0412 SES Vander Have(荷兰)
17 KUHN1387 SES Vander Have(荷兰) 64 ADV0401 SES Vander Have(荷兰)
18 BTS705 BETASEED公司(美国) 65 IM1162 SES Vander Have(荷兰)
19 XJT9907 新疆农业科学院经济研究所(中国) 66 H003 SES Vander Have(荷兰)
20 SX1512 SES Vander Have(荷兰) 67 SR496 SES Vander Have(荷兰)
21 SX1511 SES Vander Have(荷兰) 68 H7IM15 SES Vander Have(荷兰)
22 KWS2314 KWS SAAT SE(德国) 69 IM802 SES Vander Have(荷兰)
23 BTS8840 BETASEED公司(美国) 70 HX910 SES Vander Have(荷兰)
24 BTS8126 BETASEED公司(美国) 71 LN90910 SES Vander Have(荷兰)
25 BTS8125 BETASEED公司(美国) 72 SV1375 SES Vander Have(荷兰)
26 BTS5950 BETASEED公司(美国) 73 MA3005 MariboHilleshög ApS(丹麦)
27 BTS2730 BETASEED公司(美国) 74 MA10-4 MariboHilleshög ApS(丹麦)
28 XJT9908 新疆农业科学院经济作物研究所(中国) 75 MA3001 MariboHilleshög ApS(丹麦)
29 XJT9909 新疆农业科学院经济作物研究所(中国) 76 MA2070 MariboHilleshög ApS(丹麦)
30 XJT9911 新疆农业科学院经济作物研究所(中国) 77 MA097 黑龙江北方种业有限公司(中国)
31 KWS9147 KWS SAAT SE(德国) 78 KUHN8062 SES Vander Have(荷兰)
32 KWS1479 KWS SAAT SE(德国) 79 KUHN9046 SES Vander Have(荷兰)
33 KWS1231 KWS SAAT SE(德国) 80 KUHN1178 SES Vander Have(荷兰)
34 KWS1176 KWS SAAT SE(德国) 81 爱丽斯 SES Vander Have(荷兰)
35 LN80891 莱恩公司(英国) 82 KUHN8060 SES Vander Have(荷兰)
36 LS1318 莱恩公司(英国) 83 SD12830 STRUBE GmbH & Co.KG(德国)
37 新甜14号 新疆农业科学院经济作物研究所(中国) 84 PJ1 SES Vander Have(荷兰)
38 新甜15号 新疆农业科学院经济作物研究所(中国) 85 BETA237 BETASEED公司(美国)
39 KUHN814 SES Vander Have(荷兰) 86 BETA240 BETASEED公司(美国)
40 MA11-8 MariboHilleshög ApS(丹麦) 87 BETA176 BETASEED公司(美国)
41 MA10-6 MariboHilleshög ApS(丹麦) 88 BETA468 BETASEED公司(美国)
42 KWS1197 KWS SAAT SE(德国) 89 BETA866 BETASEED公司(美国)
43 SX181 SES Vander Have(荷兰) 90 BETA796 BETASEED公司(美国)
44 H809 SES Vander Have(荷兰) 91 BETA957 BETASEED公司(美国)
45 ST13092 STRUBE GmbH & Co.KG(德国) 92 SS1532 新疆宏景农业科技发展有限公司(中国)
46 SD13806 STRUBE GmbH & Co.KG(德国) 93 VF3019 V-Field Agro-Tech B.V(荷兰)
47 LS1216 莱恩种业(英国) 94 SD21816 STRUBE GmbH & Co.KG(德国)
序号Number 品种Variety 来源Source 序号Number 品种Variety 来源Source
95 HI0936 MariboHilleshög ApS(丹麦) 102 KUHN1260 SES Vander Have(荷兰)
96 SV1433 SES Vander Have(荷兰) 103 KUHN1357 SES Vander Have(荷兰)
97 KUHN1001 SES Vander Have(荷兰) 104 KUHN1280 SES Vander Have(荷兰)
98 SV1434 SES Vander Have(荷兰) 105 SV1752 SES Vander Have(荷兰)
99 SV1366 SES Vander Have(荷兰) 106 SX1517 SES Vander Have(荷兰)
100 MK4162 SES Vander Have(荷兰) 107 KUHN4092 SES Vander Have(荷兰)
101 SV1588 SES Vander Have(荷兰)

Table 2

SSR primers information"

序号Number 引物Primer 正向序列Forward primer (5'-3') 反向序列Reverse primer (3'-5')
1 BVV21 TTGGAGTCGAAGTAGTAGTGTTAT GTTTATTCAGGGGTGGTGTTTG
2 BVV45 GTATAGCAAAAGTCATTTTGTTTGTGT GTTTCTCGGCCTTCCCTTTCTAATGTCTAG
3 FDSB1427 TTGAAGGCTCACCTCAAACAAA CTGTTGCTGTTGCTGTTGCT
4 LNX21 GAACAGGCTCAAGCTCATCC AGCGTCATAAGCCAAACAGAA
5 LNX37 TGGAAACACAAAACCTCAAGC ACGTTTGGCCATAGTGATCC
6 LNX63 ATAAGTATTGCGAGCGCCAC TTCTGCAGCAACAGATCCAG
7 LNX87 AGAGGCCACGAAGAATCTCA GCTAAGGAACGATTCTCCCC
8 LNX88 CATGGAATTCCCACCAGACT CCTCTTCTGCGCTGCTACTT
9 SB06 AAATTTTCGCCACCACTGTC ACCAAAGATCGAGCGAAGAA
10 SB13 ACAGCAAGATCAGAGCCGTT TGGACCCACCATTTACATCA
11 SB15 CACCCAGCCTATCTCTCGAC GTGGTGGGCAGTTTTAGGAA
12 SSD7 TCATTTTAACACTTCAATCATCCAA CCGAGATCGAAACACTCTCC
13 SSD15 GATCCGAGGAAACAAGGGAT GCCACGACCAAAATCTCAGT
14 SSD81 CCATGGCACTCTTTTTGGTT AAAGCAGAAAACTTTAGCACATCA
15 SSD130 CTCAAACAAAGCTGCCCTTC GAAGATTGGCAACAACCCAT
16 TC75 GACCTTGACGCTGCTAACCT GCCCTTCCATTTCCTTTTTC
17 TC81 CGTCCGCTCTCATTCTTCAG CTTCGCCAGAAATGAAATGC
18 TC97 CGGGATTCCATCTCTCAAAG AAGAAGAGGTTGCTCGGACA
19 TC122 GTTTTGGTTCTGGCACGAGT GGGATCAACGTGAACATCCT
20 TC131 TTAGCAGGAGCAGCAGGAAT CTTACCGCAATTTGGATGGT

Fig.1

PCR products fingerprintings of sugar beet varieties using primer TC122"

Table 3

Polymorphism information of SSR primers in the tested materials"

引物Primer 多态百分比Polymorphism percentage (%) Na Ne PICPIC value H I
BVV21 100.00 6 3.92 0.76 0.69 1.15
BVV45 78.78 8 4.89 0.71 0.69 1.21
FDSB1427 100.00 8 4.43 0.71 0.39 0.79
LNX21 75.00 8 5.58 0.61 1.02 1.62
LNX37 50.00 10 6.34 0.65 1.06 1.81
LNX63 66.67 10 7.44 0.71 1.52 2.36
LNX87 100.00 8 5.44 0.63 0.86 1.39
LNX88 100.00 8 4.47 0.57 0.42 0.84
SB06 60.00 6 4.89 0.23 1.15 1.71
SB13 85.71 12 7.41 0.75 1.12 2.00
SB15 66.67 6 4.11 0.68 0.62 0.95
SSD7 66.67 8 5.11 0.63 0.82 0.78
SSD15 80.00 4 2.97 0.71 0.52 0.78
SSD81 100.00 8 4.55 0.31 0.42 0.78
SSD130 83.33 14 8.45 0.72 1.06 1.86
TC75 80.00 8 5.54 0.37 1.07 1.73
TC81 100.00 12 7.85 0.70 1.16 2.00
TC97 85.71 14 10.14 0.83 1.87 2.90
TC122 66.67 14 9.55 0.68 1.59 2.58
TC131 66.67 8 5.16 0.08 0.86 1.45
平均Average 9 5.91 0.60 0.95 1.53

Fig.2

Cluster analysis of 107 sugar beet varieties"

[1] Zaki M, El-Sarag E, Maamoun H, et al. Agronomic performance sugar beet (Beta vulgaris L.) in Egypt using inorganic,organic and biofertilizers. Egyptian Journal of Agronomy, 2018, 40(1):89-103.
doi: 10.21608/agro.2018.2681.1092
[2] 胡丹东, 赵久然. DNA分子标记技术及其在玉米育种中的应用. 甘肃农业大学学报, 2007, 42(6):92-98.
[3] 姚路畅, 朱东顺, 李燕, 等. 对目前我国甜菜育种探讨. 北京农业, 2012(21):26.
[4] 吴则东, 王华忠. 我国甜菜育种的主要方法、存在问题及其解决途径. 中国糖料, 2011(1):67-70.
[5] 魏良民, 王军. 现代甜菜育种的目标和技术方向. 中国甜菜糖业, 2003(2):14-18.
[6] 赵尚敏, 白晨, 张惠忠, 等. SSR标记技术及其在甜菜育种中的应用. 内蒙古农业科技, 2014(2):115-116,135.
[7] Halldén C, Hjerdin A, Rading I M, et al. A high density RFLP linkage map of sugar beet. Genome, 1996, 39(4):634-645.
pmid: 18469923
[8] Barzen E, Mechelke W, Ritter E, et al. An extended map of sugar beet genome containing RFLP and RAPD loci. Theoretical and Applied Genetics, 1995, 90(2):189-193.
doi: 10.1007/BF00222201 pmid: 24173890
[9] Schondelmaier J, Steinrücken G, Jung C. Integration of AFLP markers into a linkage map of sugar beet (Beta vulgaris L.). Plant Breeding, 2010, 115(4):231-237.
doi: 10.1111/pbr.1996.115.issue-4
[10] Schneider K, Schäfer-Pregl R, Borchardt D, et al. Mapping QTLs for sucrose content,yield and quality in a sugar beet population fingerprinted by EST-related markers. Theoretical and Applied Genetics, 2002, 104(6/7):1107-1113.
doi: 10.1007/s00122-002-0890-8
[11] 邹奕, 马龙彪, 江伟, 等. ISSR分子标记技术在甜菜育种中的应用. 中国糖料, 2018, 40(3):75-77,80.
[12] 刘蕊, 刘乃新, 吴玉梅, 等. 基于SSR、InDel分子标记的红甜菜遗传多样性分析. 中国农学通报, 2019, 35(22):47-52.
[13] 闫彩燕, 邹奕, 马龙彪, 等. 利用SRAP引物组合构建甜菜品种的指纹图谱. 中国农学通报, 2018, 35(34):40-43.
[14] Grimmer M K, Trybush S, Hanley S, et al. An anchored linkage map for sugar beet based on AFLP,SNP and RAPD markers and QTL mapping of a new source of resistance to Beet necrotic yellow vein virus. Theoretical and Applied Genetics, 2007, 114(7):1151-1160.
pmid: 17333102
[15] 张瑞平, 周联东, 王文洁, 等. 玉米杂交种新科891及其亲本SSR指纹图谱的构建. 中国种业, 2019, 290(5):74-76.
[16] 秦瑞英, 许学, 张立平, 等. 小麦SSR指纹图谱及品种身份证的构建——基于毛细管电泳分析. 中国农学通报, 2017(34):46-55.
[17] 李国彬, 王伟伟, 史聪仙, 等. 云南省马铃薯品种资源鉴定及分子指纹图谱的建立. 分子植物育种, 2019, 17(14):4679-4691.
[18] 陈其福, 李艳美, 李佳荫, 等. 基于SSR标记的食荚菜豆指纹图谱构建. 北方园艺, 2019, 432(9):7-13.
[19] Rae S J, Aldam C, Dominguez I, et al. Development and incorporation of microsatellite markers into the linkage map of sugar beet (Beta vulgaris spp.). Theoretical and Applied Genetics, 2000, 100(8):1240-1248.
doi: 10.1007/s001220051430
[20] Cureton A N, Burns M J, Ford-Lloyd B V, et al. Development of simple sequence repeat (SSR) markers for the assessment of gene flow between sea beet (Beta vulgaris ssp. maritima) populations. Molecular Ecology Resources, 2010, 2(4):402-403.
[21] 史树德, 魏磊, 张子义, 等. 甜菜EST-SSR引物的开发与应用. 中国糖料, 2011(3):1-5.
[22] 牛泽如, 杨文柱, 庞磊, 等. 基于ISSR和AFLP标记开发甜菜SSR引物. 中国农学通报, 2010, 26(21):147-151.
[23] Laurent V, Devaux P, Thiel T, et al. Comparative effectiveness of sugar beet microsatellite markers isolated from genomic libraries and GenBank ESTs to map the sugar beet genome. Theoretical and Applied Genetics, 2007, 115(6):793-805.
pmid: 17646961
[24] 符德欢, 朱高倩, 郭佳玉, 等. 改良CTAB法提取重楼属3种药用植物干燥根茎DNA. 中药材, 2017, 40(6):1295-1299.
[25] 齐少玮, 闫彩燕, 郭佳, 等. 利用ISSR构建甜菜品种指纹图谱. 中国糖料, 2019(4):18-23.
[26] 吴则东, 王茂芊, 吴玉梅, 等. 32个甜菜品种指纹图谱构建与遗传多样性分析. 中国农学通报, 2015(12):169-174.
[27] 王华忠, 吴则东, 王晓武, 等. 利用SRAP与SSR标记分析不同类型甜菜的遗传多样性. 作物学报, 2008, 34(1):37-46.
[28] 陈琼, 王兰芬, 唐浩, 等. 普通菜豆SSR分子标记鉴定体系的建立及应用. 植物遗传资源学报, 2019, 20(6):144-155.
[29] 吴则东, 马龙彪, 胡珅, 等. 国产糖甜菜品种SSR指纹图谱的构建. 中国农学通报, 2013(28):98-102.
[30] 赵耀, 刘康, 李仕钦, 等. 种子质量检测工作的思考与体会. 中国种业, 2011(6):42-43.
[1] Zhang Ting, Zhang Bowen, Li Guolong, Cao Yang, Li Yue, Zhang Shaoying. Effects of Phosphorus Application Rate and Method on Photosynthetic Performance and Yield of Sugar Beet [J]. Crops, 2021, 37(5): 187-193.
[2] Zhang Quanfang, Jiang Mingsong, Chen Feng, Zhu Wenyin, Zhou Xuebiao, Yang Lianqun, Xu Jiandi. Analysis of Genetic Diversity of Rice Varieties (Lines) in Shandong Province [J]. Crops, 2021, 37(4): 26-31.
[3] Li Guolong, Wu Haixia, Sun Yaqing. Construction of RNAi Expression Vector of BvWRKY23 Gene in Sugar Beet [J]. Crops, 2020, 36(5): 41-47.
[4] Zhang Ziqiang, Bai Chen, Zhang Huizhong, Li Xiaodong, Wang Liang, Fu Zengjuan, Zhao Shangmin, E Yuanyuan, Zhang Hui, Zhang Bizhou. Research Progress on Morphology, Physiological and Biochemical Characteristics, and Molecular Level of Salt Stress in Sugar Beet [J]. Crops, 2020, 36(3): 27-33.
[5] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers [J]. Crops, 2019, 35(5): 15-21.
[6] Yan Wei,Li Guolong,Li Zhi,Cao Yang,Zhang Shaoying. Effects of Nitrogen Application Rate and Planting Density Interaction on Photosynthetic Characteristics and Root Yield of Sugar Beet under Full-Film Mulching in Arid Regions [J]. Crops, 2019, 35(4): 100-106.
[7] Xinqi Geng,Huijuan Yang,Yanqing Qin,Xingyou Yang,Shimin Zhao,Hongzhi Shi. Development and Application of Tobacco SSR Markers Based on Genome Re-Sequencing of Different Tobacco Types [J]. Crops, 2019, 35(2): 84-89.
[8] Junping He,Shufen Zhang,Jianping Wang,Dongfang Cai,Jinhua Cao,Yancheng Wen,Kun Hu,Lei Zhao,Dongguo Wang,Jiacheng Zhu. Hybrid Purity Identification of Fengyou No.10 by SSR Markers in Bassica napus [J]. Crops, 2019, 35(1): 75-80.
[9] Lihua Liu,Shaohua Yuan,Shuying Feng,Binshuang Pang,Hongbo Li,Yangna Liu,Liping Zhang,Changping Zhao. Genetic Difference Analysis and Construction of SSR Fingerprinting Database for F-Type Wheat Male Sterile Line and Restorer Lines [J]. Crops, 2017, 33(6): 30-36.
[10] Guolong Li,Yaqing Sun,Shiqin Shao,Yongfeng Zhang. Response of Antioxidant System to Drought Stress in Sugar Beet Leaves at Seedling Stage [J]. Crops, 2017, 33(5): 73-79.
[11] Junying Wu,Li Qin,Jin Yang,Dezhi Qin. Study of Salt Stress on Sugar Beet Seedling Growth and Nutrient Transport of Nongda Tianyan No. 6 [J]. Crops, 2017, 33(3): 75-80.
[12] Limin Sang,Caifeng Li,Yubo Wang,Lei Liu,Guanghao Guo,Jian Guo,Ming Chen. Effects of Na2SO4+NaCl Mixed Salt Stress on the Growth of Sugar Beet Seedlings [J]. Crops, 2016, 32(4): 137-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!