Crops ›› 2020, Vol. 36 ›› Issue (3): 27-33.doi: 10.16035/j.issn.1001-7283.2020.03.005

Previous Articles     Next Articles

Research Progress on Morphology, Physiological and Biochemical Characteristics, and Molecular Level of Salt Stress in Sugar Beet

Zhang Ziqiang, Bai Chen, Zhang Huizhong, Li Xiaodong, Wang Liang, Fu Zengjuan, Zhao Shangmin, E Yuanyuan, Zhang Hui, Zhang Bizhou   

  1. Special Crop Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Huhhot 010031, Inner Mongolia, China
  • Received:2019-10-17 Revised:2020-02-28 Online:2020-06-15 Published:2020-06-10

Abstract:

Salt stress is considered as one of the main abiotic stresses, which has important impacts on crop growth and development. Sugar beet has a certain level of salt tolerance and it is of great significance to further examine the salt tolerance mechanism of sugar beet and to make use of it for development of new sugar beet varieties with strong salt tolerance for efficient cultivation in saline soil. In this paper, the research status of sugar beet's salt tolerance was discussed from three aspects: morphological characteristics, physiological and biochemical characteristics, and molecular level. At the same time, the existing problems and future research directions of salt tolerance were discussed.

Key words: Sugar beet, Salt stress, Morphology, Physiology and biochemistry, Molecular level

[1] Tilman D, Balzer C, Hill J , et al. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(50):20260-20264.
[2] Roy S J, Tucker E J, Tester M . Genetic analysis of abiotic stress tolerance in crops. Current Opinion in Plant Biology, 2011,14(3):232-239.
doi: 10.1016/j.pbi.2011.03.002
[3] Botella M A, Rosado A, Bressan R A , et al. Plant Adaptive Responses to Salinity Stress//Plant Abiotic Stress. UK: Wiley-Blackwell, 2007: 37-70.
[4] Wang Y G, Piergiorgio S, Yu L H , et al. The physiological and metabolic changes in sugar beet seedlings under different levels of salt stress. Journal of Plant Research, 2017,130(6):1079-1093.
doi: 10.1007/s10265-017-0964-y
[5] 金明亮, 贾海龙 . 甜菜作为能源作物的优势及其发展前景. 中国糖料, 2011(1):58-59,66.
[6] 冯瑞军, 伍国强 . 甜菜耐盐性生理及其分子水平研究进展. 中国糖料, 2015,37(6):60-65.
[7] Shamim A B, Masum B, Neelima H , et al. Detection of salt tolerant hybrid maize as germination indices and seedling growth performance. Bulgarian Journal of Agricultural Science, 2017,23(5):793-798.
[8] Yang Y, Liu Q, Wang G X , et al. Germination,osmotic adjustment and antioxidant enzyme activities of gibberellin-pretreated Picea asperata seeds under water stress. New Forests, 2010(39):231-243.
doi: 10.1007/s11056-009-9167-2
[9] 武俊英, 秦丽, 杨进 , 等. 盐胁迫对农大甜研6号甜菜幼苗生长和养分运移的研究. 作物杂志, 2017(3):75-80.
[10] Salwa A O, Mekki B B . Root yield and quality of sugar beet (Beta vulgaris L.) in response to ascorbic acid and saline irrigation water. American-Eurasian Journal of Agricultural and Environmental Sciences, 2008,4(4):504-513.
[11] Cornillon P, Palloix A . Influence of sodium chloride on the growth and mineral nutrition of pepper cultivars. Journal of Plant Nutrition, 1997,20(9):1085-1094.
doi: 10.1080/01904169709365320
[12] Apse M P, Aharon G S, Snedden W A , et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis . Science, 1999,285(5431):1256-1258.
doi: 10.1126/science.285.5431.1256
[13] Stephen J H, Simon G, Jonathan P L . Sodium chloride reduces growth and cytosolic calcium, but does not affect cytosolic pH, in root hairs of Arabidopsis thaliana L. Journal of Experimental Botany, 2003,54(385):1269-1280.
doi: 10.1093/jxb/erg134
[14] Dadkhah A R . Response of root yield and quality of sugar beet (Beta vulgaris) to salt stress. Iran Agricultural Research, 2008,150(3):147-153.
[15] Mohamed D, Akira S, Stéphanie B , et al. Aminoacid changes in leaves and roots of tomato (Solanum lycopersicum) during salt stress. Acta Botanica Gallica, 2010,157(2):255-264.
doi: 10.1080/12538078.2010.10516203
[16] 於丽华 . NaCl胁迫下甜菜的生理响应及其耐盐机理研究. 沈阳:沈阳农业大学, 2015.
[17] 王激清, 刘社平, 白晓瑛 . 盐胁迫对不同品种甜菜种子萌发特性的影响. 江苏农业科学, 2015,43(3):96-98.
[18] Ihsan M I A, Susanne S, Ewald S . Effects of water salinity on germination and early seedling growth of untreated and pelleted sugar beet seeds (Beta vulgaris L.). Journal Für Kulturpflanzen, 2018,70(10):305-313.
[19] Monti A, Barbanti L, Venturi G . Photosynthesis on individual leaves of sugar beet (Beta vulgaris) during the ontogeny at variable water regimes. Annals of Applied Biology, 2007,151:155-165.
doi: 10.1111/aab.2007.151.issue-2
[20] Stella L, Maria V, Tim D P , et al. Water use efficiency, photosynthesis and plant growth of Chia (Salvia hispanica L.):a glasshouse experiment. Acta Physiologiae Plantarum, 2019,41(3):3-10.
doi: 10.1007/s11738-018-2795-4
[21] Jan A, Eva M A, James B , et al. Advances in Photosynthesis and Respiration-Photosynthesis. New York:Kluwer Academic Publishers, 2003.
[22] Mark W H, Irninig A M, Karen L M . Species and population variation to salinity stress in Panicum hemitomon,Spartina patens,and Spartina alterniflora:morphological and physiological constraints. Environmental and Experimental Botany, 2001,46(3):277-279.
[23] Sultana N, Itoh R, Ikeda T . Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany, 1994,42(3):211-220.
[24] Downton W J S, Grant W J R, Robinson S P . Photosynthetic and stomatal responses of spinach leaves to salt stress. Plant Physiology, 1985,78(1):85-88.
doi: 10.1104/pp.78.1.85
[25] Ashraf M . Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. Environmental and Experimental Botany, 2001,45(2):155-163.
[26] Herralde F D, Biel C, Savé R , et al. Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants. Plant Science, 1998,139(1):9-17.
doi: 10.1016/S0168-9452(98)00174-5
[27] Sultana N, Ikeda T, Kashem M A . Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. Environmental and Experimental Botany, 2001,46(2):129-140.
doi: 10.1016/S0098-8472(01)00090-9
[28] Steduto P, Albrizio R, Giorio P , et al. Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environmental and Experimental Botany, 2000,44(3):243-255.
doi: 10.1016/S0098-8472(00)00071-X
[29] Bethke P C, Drew M C, Bethke P C , et al. Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCl salinity. Plant Physiology, 1992,99(1):219-226.
[30] Dadkhah A, Griffiths H . Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of sugar beet plants under salt stress. Iran Agricultural Research, 2004,23(1):35-50.
[31] Alireza D . Effect of long term salt stress on gas exchange and leaf carbohydrate contents in two sugar beet (Beta vnlgaris L.) cultivars. Russian Agricultural Sciences, 2015,41(6):423-428.
doi: 10.3103/S1068367415060038
[32] Muhammad J, Shafiq R, Eui S R . Salinity effect on plant growth, PSⅡ photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.). Journal of Botany, 2007,39(3):753-760.
[33] Josefina H N, Berta D, Emilia L . Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Science, 2002,163(3):507-514.
[34] Yamada N, Sakakibara S, Tsutsumi K , et al. Expression and substrate specificity of betaine/proline transporters suggest a novel choline transport mechanism in sugar beet. Journal of Plant Physiology, 2011,168(14):1609-1616.
[35] 刘洋 . 不同甜菜品种对盐碱胁迫的生理生化相应. 哈尔滨:东北农业大学, 2014.
[36] 伍国强, 冯瑞军, 李善家 , 等. 盐处理对甜菜生长和渗透调节物质积累的影响. 草业学报, 2017,26(4):169-177.
[37] Yamada N, Worrawat P, Koji Y , et al. Preferential accumulation of betaine uncoupled to choline monooxygenase in youny leaves of sugar beet-importance of long-distance translocation of betaine under normal and salt-stressed conditions. Journal of Plant Physiology, 2009,166(18):2058-2070.
doi: 10.1016/j.jplph.2009.06.016
[38] Sazzad M H, Marcus P, Abdelaleim I E , et al. Metabolite profiling at the cellular and subcellular level reveals metabolites associated with salinity tolerance in sugar beet. Journal of Experimental Botany, 2017,68(21):5961-5976.
doi: 10.1093/jxb/erx388
[39] Sazzad M H, Abdelaleim I E, Marten M , et al. Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet. Journal of Experimental Botany, 2017,68(5):1283-1298.
doi: 10.1093/jxb/erx019
[40] Kim J M, Sasaki T, Ueda M , et al. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Plant Science, 2015,6:114.
[41] Chen L T, Luo M, Wang Y Y , et al. Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. Journal of Experimental Botany, 2010,61(12):3345-3353.
doi: 10.1093/jxb/erq154
[42] Yuan L, Liu X, Luo M , et al. Involvement of histone modifications in plant abiotic stress responses. Journal of Integrative Plant Biology, 2013,55(10):892-901.
doi: 10.1111/jipb.12060
[43] Seher Y, Filiz O, Aybüke G , et al. Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritime L. under salt stress. Plant Physiology and Biochemistry, 2016,100(1):37-46.
doi: 10.1016/j.plaphy.2015.12.019
[44] 於丽华, 韩晓日, 耿贵 , 等. NaCl胁迫下甜菜三种内源激素含量的动态变化. 东北农业大学学报, 2014,45(12):58-64.
[45] Cosgrove D J . Loosening of plant cell walls by expansions. Nature, 2000,407(6802):321-326.
doi: 10.1038/35030000
[46] Christian Z, Anja N, Sandra K , et al. Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress . Journal of Plant Physiology, 2005,162(1):55-66.
doi: 10.1016/j.jplph.2004.03.010
[47] Abdul W, Stefan H, Britta P , et al. Hydrolytic and pumping activity of H+-ATPases from leaves of sugar beet (Beta vulgaris L.) as affected by salt stress . Journal of Plant Physiology, 2010,167(9):725-731.
doi: 10.1016/j.jplph.2009.12.018
[48] Stefan S, Enrique D S, María B G . Rhizospheric bacteria alleviate salt-produced stress in sunflower. Journal of Environmental Management, 2012,95(3):537-541.
[49] Fan P F, Chen D T, He Y A , et al. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline-alkaline lands. International Journal of Phytoremediation, 2016,18(11):1113-1121.
doi: 10.1080/15226514.2016.1183583
[50] Behzad R K, Hossein A A, Hassan E , et al. Improved growth and salinity tolerance of the halophyte Salicornia sp. by co-inoculation with endophytic and rhizosphere bacteria. Applied Soil Ecology, 2019,138(7):160-170.
doi: 10.1016/j.apsoil.2019.02.022
[51] Dilfuza E, Stephan W, Li L , et al. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress. Bioengineered, 2017,8(4):433-438.
doi: 10.1080/21655979.2016.1250983
[52] Etesami H, Beattie G A . Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in Microbiology, 2018,9:148.
doi: 10.3389/fmicb.2018.00148
[53] Josef K, José A H, Fuensanta C . Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany, 2009,65(2):245-252.
doi: 10.1016/j.envexpbot.2008.09.008
[54] 郭剑, 李彩风, 刘磊 , 等. Na2CO3胁迫下甜菜幼苗根际土壤环境因子的变化及其相关性. 应用生态学报, 2016,27(3):904-910.
[55] Sakamoto A, Murata N . The role of glycine betaine in the protection of plants from stress:clues from transgenic plants. Plant, Cell and Environment, 2002,25(2):163-171.
doi: 10.1046/j.0016-8025.2001.00790.x
[56] David D S, Peter S S, Elizabeth A W . Phosphocholine synthesis in spinach:characterization of phosphoethanolamine N-methyltransferase. Physiologia Plantarum, 2000,108(10):286-294.
doi: 10.1034/j.1399-3054.2000.108003286.x
[57] Tomoki T, Tomoyuki O, Yuhei T , et al. Transcriptional response of glycinebetaine-related genes to salt stress and light in leaf beet. Plant Biotechnology, 2006,23(8):317-320.
doi: 10.5511/plantbiotechnology.23.317
[58] Rodolphe K, Ramon S, Roc R P . A catalytic subunit of the sugar beet protein kinase CK2 is induced by salt stress and increases NaCl tolerance in Saccharomyces cerevisiae. Plant Molecular Biology, 2001,47(5):571-579.
doi: 10.1023/A:1012227913356
[59] Kunihide K, Koichi T, Vandna R , et al. Isolation and functional characterization of 3-phosphoglycerate dehydrogenase involved in salt responses in sugar beet. Protoplasma, 2017,254(6):2305-2313.
doi: 10.1007/s00709-017-1127-7
[60] Cui J, Sun Z Y, Li J L , et al. Characterization of miRNA160/164 and their targets expression of beet (Beta vulgaris) seedlings under the salt tolerance. Plant Molecular Biology Reporter, 2018,36(5):790-799.
doi: 10.1007/s11105-018-1118-7
[61] Wang Y G, Zhan Y N, Wu C . et al. Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. Plant Science, 2012,191(8):93-99.
[62] Yu B, Li J N, Koh J , et al. Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress. Journal of Proteomics, 2016,143(4):286-297.
doi: 10.1016/j.jprot.2016.04.011
[63] Wu C, Ma C Q, Pan Y , et al. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. Journal of Plant Research, 2013,126(3):415-425.
doi: 10.1007/s10265-012-0532-4
[1] He Wanchun, Huang Kai, Ling Peng, Chen Zixiong, Wang Jingcai, Pan Xiaochun, Zhang Juanning, Li Pengcheng. Effects of Different Ratio of Organic Fertilizer Nitrogen to Fertilizer Nitrogen on the Absorption Capacity and Morphology of Potato Roots [J]. Crops, 2020, 36(3): 132-136.
[2] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice [J]. Crops, 2020, 36(2): 1-8.
[3] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures [J]. Crops, 2020, 36(2): 112-118.
[4] Zhang Di,Miao Xingfen,Wang Yuting. Evaluation and Screening of Salt Tolerance in 100 Foxtail Millet at Germination Stage [J]. Crops, 2019, 35(6): 43-49.
[5] Yang Tian,Zhang Yongqing,Dong Fuhui,Ma Xingxing,Xue Xiaojiao. Research on the Root Growth of Different Drought-Resistant Fagopyrum tataricum under Different Water Conditions [J]. Crops, 2019, 35(6): 76-82.
[6] Ge Zhenmei,Liu Zhiguo,Zhao Lu,Zhang Xiaoyu,Liu Guixia. Effects of Salt Stress on Seeds Germination of Astragalus membranaceus [J]. Crops, 2019, 35(6): 187-194.
[7] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels [J]. Crops, 2019, 35(5): 28-36.
[8] Yan Wei,Li Guolong,Li Zhi,Cao Yang,Zhang Shaoying. Effects of Nitrogen Application Rate and Planting Density Interaction on Photosynthetic Characteristics and Root Yield of Sugar Beet under Full-Film Mulching in Arid Regions [J]. Crops, 2019, 35(4): 100-106.
[9] Gu Jiaojiao,Hu Bowen,Jia Yan,Sha Hanjing,Li Jingwei,Ma Chao,Zhao Hongwei. Effects of Salt Stress on Root Related Traits and Yield of Rice [J]. Crops, 2019, 35(4): 176-182.
[10] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum [J]. Crops, 2018, 34(4): 167-174.
[11] Xiaoyu Liang, Chunyu Lin, Shumei Ma, Yang Wang. Mining Elite Alleles for Germination Ability in Rice (Oryza sativa L.) under Salt and Alkaline Stress [J]. Crops, 2018, 34(4): 48-52.
[12] Kailun Zhang,Shouming Chen,Hong Yin,Bin Li,Liangwen Xie,Fan He. and Antioxidant Activity of Tobacco Seedlings under Salt Stress [J]. Crops, 2018, 34(3): 123-128.
[13] Jianxia Liu,Xiaodan Zhang,Runmei Wang,Feng Zhou,Wenying Liu,Zhiping Liu. Effects of Seed Soaking with 6-BA on Germination and Physiological Characteristics of Mung Bean under Salt Stress [J]. Crops, 2018, 34(1): 166-172.
[14] Yaoyan Li,Yanyan Pei,Shanyan Huang,Yingyan Zhang,Songji Wei,Yangjiao Xie,Qiong Zhou. Pharmacognosy of Zhongliuteng (Pileostegia tomentella Hand. Mazz) of Yao Medicine [J]. Crops, 2018, 34(1): 61-65.
[15] Nannan Lu,Lihua Yan,Chongke Zheng,Haibo Yin,Shanli Guo,Xianzhi Xie. Effects of Salt Stress on Growth and Agronomic Traits of Yanfeng 47 and Yanjing 456 [J]. Crops, 2017, 33(5): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!