Crops ›› 2022, Vol. 38 ›› Issue (5): 62-68.doi: 10.16035/j.issn.1001-7283.2022.05.009

Previous Articles     Next Articles

Analysis of Carotenoid Content in Maize Inbred Lines with Different Color Grains

Zhu Hang1,2(), Cui Fangqing2,3, Lu Chuanli2, Chen Weiwei2, Li Xuhui2, Lu Siqi2,3, Zhang Xiangbo2, Zhao Hua4(), Qi Yongwen2,3()   

  1. 1College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
    2Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, Guangdong, China
    3College of Agriculture & Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510100, Guangdong, China
    4Guangzhou National Modern Agricultural Industry Science and Technology Innovation Center, Guangzhou 510520, Guangdong, China
  • Received:2022-04-16 Revised:2022-06-15 Online:2022-10-15 Published:2022-10-19

Abstract:

The contents of four carotenoids including lutein, zeaxanthin, β-cryptoxanthin and β-carotene in grains of 60 maize inbred lines were detected by high performance liquid chromatography. The results showed that the average contents of lutein, zeaxanthin, β-cryptoxanthin and β-carotene were 56.32, 0.85, 1.31 and 5.75mg/kg, respectively. The 60 maize inbred lines could be classified into four grades according to the grain color from light to dark. The darker the grain color, the higher the carotene content. The correlation analysis of carotenoid contents in 60 maize inbred lines showed that there were extremely significant positive correlations between R, G, B and Gray values (P < 0.01), and the correlation coefficients were 0.992 (between G and Gray) and 0.939 (between R and Gray), respectively. There were extremely significant positive correlations among the contents of four carotenoids, and the correlation coefficients were 0.830 (between β-cryptoxanthin and β-carotene), 0.815 (between β-cryptoxanthin and zeaxanthin) respectively. Cluster analysis was performed according to carotenoid content and the 60 maize inbred lines were divided into five categories. Among them, the first category had the lowest carotenoid content, the second category riched in carotenoids, and the fifth category riched in vitamin A. It was concluded that the types and contents of carotenoids were important factors affecting the color of maize grains, and the conclusion provided a basis for selecting maize with high nutritional value and rich in cryptoxanthin.

Key words: Maize, Carotenoid, High performance liquid chromatography

Table 1

60 tested materials"

编号
Number
材料名称
Material name
编号
Number
材料名称
Material name
编号
Number
材料名称
Material name
编号
Number
材料名称
Material name
编号
Number
材料名称
Material name
C1 CAU404 C13 CAU204 C25 CAU532 C37 IL18 C49 CAU206
C2 CAU322 C14 CAU366 C26 B73 C38 CAU319 C50 CAU393
C3 CAU440 C15 CAU55 C27 CAU489 C39 CAU75 C51 CAU149
C4 IL23 C16 CAU281 C28 CAU482 C40 CAU146 C52 CAU129
C5 CAU252 C17 CAU219 C29 IL5 C41 CAU164 C53 CAU479
C6 CAU268 C18 CAU140 C30 CAU167 C42 CAU274 C54 CAU261
C7 IL52 C19 CAU597 C31 CAU208 C43 CAU269 C55 IL51
C8 CAU501 C20 CAU338 C32 CAU14 C44 CAU565 C56 IL27
C9 CAU263 C21 CAU513 C33 CAU342 C45 IL86 C57 IL65
C10 CAU159 C22 CAU640 C34 CAU93 C46 CAU502 C58 CAU18
C11 CAU297 C23 CAU525 C35 CAU365 C47 CAU539 C59 CAU160
C12 CAU144 C24 CAU504 C36 CAU416 C48 CAU154 C60 CAU225

Fig.1

The color grades of maize kernels"

Table 2

Concentration of mixed standard solution mg/kg"

标准样品
Standard sample
水平1
Level 1
水平2
Level 2
水平3
Level 3
水平4
Level 4
水平5
Level 5
水平6
Level 6
叶黄素Lutein 200.00 100.00 50.00 25.00 12.50 6.25
玉米黄质Zeaxanthin 200.00 50.00 12.50 3.13 0.78 0.20
β-隐黄质 β-cryptoxanthin 100.00 20.00 4.00 0.80 0.16 0.03
β-胡萝卜素 β-carotene 72.50 36.25 18.13 9.06 4.53 2.27

Table 3

Linear range and correlation coefficients of the four carotenoid groups"

标准样品Standard sample 线性范围Linear range (mg/kg) 线性方程Linear equation 相关系数Correlation coefficent (r2)
叶黄素Lutein 6.0~200 Y1=0.015X1 0.9905
玉米黄质Zeaxanthin 0.0~200 Y2=0.3023X2+0.1171 0.9958
β-隐黄质 β-cryptoxanthin 0.0~100 Y3=0.1119X3-0.1048 0.9976
β-胡萝卜素 β-carotene 2.0~75 Y4=0.0023X4+0.0022 0.9988

Table 4

Statistical analysis of carotenoid content of maize inbred lines mg/kg"

标准样品
Standard sample
最大值
Maximum
最小值
Minimum
平均值
Average
方差
Variance
叶黄素Lutein 99.98 0.56 56.32 776.29
玉米黄质Zeaxanthin 2.91 0.02 0.85 0.54
β-隐黄质 β-cryptoxanthin 2.20 0.94 1.31 0.11
β-胡萝卜素 β-carotene 26.61 0.61 5.75 35.57

Fig.2

Carotenoid content of four groups in different seed color grades"

Table 5

Analysis of lutein, zeaxanthin, β-cryptoxanthin and β-carotene contents in different color grades mg/kg"

等级Level 叶黄素Lutein 玉米黄质Zeaxanthin β-隐黄质β-cryptoxanthin β-胡萝卜素β-carotene
1 1.69±0.76a nd 0.94±0.00a nd
2 50.53±5.44b 0.37±0.08a 1.10±0.03a 2.12±0.40a
3 71.05±3.62b 1.31±0.12b 1.51±0.06b 8.71±1.24b
4 54.76±9.02b 1.35±0.32b 1.56±0.11b 10.89±0.77b
平均值Average 56.32 0.85 1.31 5.75
变异系数Coefficient of variation (%) 49.46 87.06 25.19 103.65
FF-value 12.291 17.662 17.238 12.767
标准差Standard deviation 27.86 0.74 0.33 5.96

Table 6

Correlation analysis between R, G, B, and Gray values and carotenoid content"

项目
Item
R G B Gray 叶黄素
Lutein
玉米黄质
Zeaxanthin
β-隐黄质
β-cryptoxanthin
β-胡萝卜素
β-carotene
R 1.000
G 0.912** 1.000
B 0.408** 0.596** 1.000
Gray 0.939** 0.992** 0.632** 1.000
叶黄素Lutein -0.256** -0.385** -0.619** -0.402** 1.000
玉米黄质Zeaxanthin -0.370** -0.520** -0.416** -0.498** 0.505** 1.000
β-隐黄质 β-cryptoxanthin -0.506** -0.598** -0.421** -0.589** 0.452** 0.815** 1.000
β-胡萝卜素 β-carotene -0.455** -0.532** -0.331** -0.520** 0.343** 0.582** 0.830** 1.000

Table 7

Analysis between carotenoid contents among different groups"

类群Group 叶黄素Lutein 玉米黄质Zeaxanthin β-隐黄质 β-cryptoxanthin β-胡萝卜素 β-carotene
1 3.94±1.30 nd 0.94±0.00 nd
2 63.68±2.94 0.83±0.08 1.28±0.03 4.76±0.46
3 24.50±0.00 0.68±0.00 1.32±0.00 15.04±0.00
4 75.44±6.06 1.62±0.22 1.76±0.16 12.41±5.30
5 85.93±4.76 2.82±0.04 2.02±0.06 14.96±3.22
平均值Average 56.76 0.86 1.30 5.19
变异系数Coefficient of variation (%) 49.52 86.05 23.08 94.03
FF-value 22.87 19.28 20.05 16.29
标准差Standard deviation 28.11 0.74 0.30 4.88
[1] Nuss E T, Tanumihardjo S A. Maize:a paramount staple crop in the context of global nutrition. Comprehensive Reviews in Food Science and Food Safety, 2010, 9(4):417-436.
doi: 10.1111/j.1541-4337.2010.00117.x
[2] Takaichi S. Carotenoids in algae:distributions,biosyntheses and functions. Marine Drugs, 2011, 9(6):1101-1118.
doi: 10.3390/md9061101
[3] 冯发强, 王国华, 王青峰, 等. 甜玉米类胡萝卜素合成关键基因PSY1、LCYECrtRB1的功能分析. 华南农业大学学报, 2015, 36(5):36-42.
[4] 肖亚冬, 宋江峰, 李大婧, 等. 甜玉米汁中类胡萝卜素热降解与其挥发性成分的相关性分析. 食品科学, 2018, 39(8):27-32.
[5] Lux P E, Schneider J, Müller F, et al. Location and variety but not phosphate starter fertilization influence the profiles of fatty acids,carotenoids,and tocochromanols in kernels of modern corn (Zea mays L.) hybrids cultivated in Germany. Journal of Agricultural and Food Chemistry, 2021, 69(9):2845-2854.
doi: 10.1021/acs.jafc.0c07571
[6] Muzhingi T, Yeum K J, Russell R M, et al. Determination of carotenoids in yellow maize,the effects of saponification and food preparations. International Journal for Vitamin and Nutrition Research, 2008, 78(3):112-120.
doi: 10.1024/0300-9831.78.3.112 pmid: 19003733
[7] Li J, Xie J, Yu J, et al. Reversed-phase high-performance liquid chromatography for the quantification and optimization for extracting 10 kinds of carotenoids in pepper (Capsicum annuum L.) leaves. Journal of Agricultural and Food Chemistry, 2017, 65(38):8475-8488.
doi: 10.1021/acs.jafc.7b02440
[8] Osterrothová K, Culka A, Němečková K, et al. Analyzing carotenoids of snow algae by raman microspectroscopy and high-performance liquid chromatography. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 212:262-271.
doi: 10.1016/j.saa.2019.01.013
[9] Bijttebier S, D'Hondt E, Noten B, et al. Ultra high performance liquid chromatography versus high performance liquid chromatography:stationary phase selectivity for generic carotenoid screening. Journal of Chromatography A, 2014, 1332:46-56.
doi: 10.1016/j.chroma.2014.01.042
[10] Végvári G, Jócsák I, Kappel N, et al. Carotenoid quantification of Cucurbita spp. by spectrophotometry,high-performance liquid chromatography and photoacoustics. Acta Scientiarum Polonorum Technologia Alimentaria, 2019, 18(2):143-152.
[11] Donato P, Inferrera V, Sciarrone D, et al. Supercritical fluid chromatography for lipid analysis in foodstuffs. Journal of Separation Science, 2017, 40(1):361-382.
doi: 10.1002/jssc.201600936 pmid: 27696781
[12] Andreeva A, Apostolova I, Velitchkova M. Temperature dependence of resonance Raman spectra of carotenoids. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2011, 78(4):1261-1265.
doi: 10.1016/j.saa.2010.12.071
[13] Girme A, Pawar S, Ghule C, et al. Bioanalytical method development and validation study of neuroprotective extract of kashmiri saffron using ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS):in vivo pharmacokinetics of apocarotenoids and carotenoids. Molecules, 2021, 26(6):1815.
doi: 10.3390/molecules26061815
[14] 王伟杰, 徐昌杰. 天然类胡萝卜素生物合成与生物技术应用. 细胞生物学杂志, 2006, 28(6):839-843.
[15] 李大婧, 肖亚冬, 何美娟, 等. 不同热处理过程中鲜食甜玉米类胡萝卜素含量变化研究. 食品科学, 2015, 36(23):78-82.
[16] Scott C E, Eldridge A L. Comparison of carotenoid content in fresh,frozen and cannedcorn. Journal of Food Composition and Analysis, 2005, 18(6):551-559.
doi: 10.1016/j.jfca.2004.04.001
[17] Rapp L M, Maple S S, Choi J H. Lutein and zeaxanthin concentrations in rod outer segment membranes from perifoveal and peripheral human retina. Investigative Ophthalmology and Visual Science, 2000, 41(5):1200-1209.
pmid: 10752961
[18] 姜立, 朱长甫, 于婷婷, 等. 类胡萝卜素的研究进展. 生物化工, 2020, 6(6):136-139.
[19] 李福枝, 刘飞, 曾晓希, 等. 天然类胡萝卜素的研究进展. 食品工业科技, 2007(9):227-232.
[20] 陈洁琼, 宋江峰, 何美娟, 等. 鲜食玉米籽粒中主要类胡萝卜素鉴定与含量分析. 食品科学, 2015, 36(18):108-113.
[21] 章园, 宋江峰, 何美娟, 等. 黄玉米籽粒发育过程中类胡萝卜素与色泽的变化. 食品科学, 2015, 36(19):77-82.
[22] 严华, 别玮, 崔凤云, 等. 高效液相色谱法分析沙棘中类胡萝卜素的含量. 食品安全质量检测学报, 2021, 12(11):4459-4466.
[23] 郭艳, 魏文婧, 刘世红, 等. 甘蓝黄花和白花在着色过程中类胡萝卜素代谢分析. 分子植物育种(2022-03-18)[2022-04-15]. http://kns.cnki.net/kcms/detail/46.1068.S.20220317.1614.018.html .
[24] 刘志斋, 吴迅, 刘海利, 等. 基于40个核心SSR标记揭示的820份中国玉米重要自交系的遗传多样性与群体结构. 中国农业科学, 2012, 45(11):2107-2138.
[25] Anne C, Kurilich, John A. Juvik Simultaneous quantification of carotenoids and tocopherols in corn kernel extracts by HPLC. Journal of Liquid Chromatography Related Technologies, 1999, 22(19):2925-2934.
doi: 10.1081/JLC-100102068
[26] 黄德海. 高效液相色谱法在食品安全检验中的应用. 食品安全导刊, 2021(25):154-155.
[27] Baseggio M, Murray M, Magallanes-Lundback M, et al. Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn. Plant Genome, 2020, 13(1):e20008.
[28] 周毅, 付志远, 李青, 等. 高油和普通玉米自交系类胡萝卜素和生育酚含量的比较分析. 作物学报, 2009, 35(11):2073-2084.
[29] Hwang T, Ndolo V U, Katundu M, et al. Provitamin A potential of landrace orange maize variety (Zea mays L.) grown in different geographical locations of central Malawi. Food Chemistry, 2016, 196:1315-1324.
doi: 10.1016/j.foodchem.2015.10.067
[30] Hu Q P, Xu J G. Profiles of carotenoids,anthocyanins,phenolics,and antioxidant activity of selected color waxy corn grains during maturation. Journal of Agricultural and Food Chemistry, 2011, 59(5):2026-2033.
doi: 10.1021/jf104149q
[31] Hu X, Liu J, Li W, et al. Biosynthesis and accumulation of multi-vitamins in black sweet corn (Zea mays L.) during kernel development. Journal of the Science of Food and Agriculture, 2020, 100(14):5230-5238.
doi: 10.1002/jsfa.10573
[32] OʼHare T J, Fanning K J, Martin I F. Zeaxanthin biofortification of sweet-corn and factors affecting zeaxanthin accumulation and colour change. Archives of Biochemistry and Biophysics, 2015, 572:184-187.
doi: S0003-9861(15)00040-5 pmid: 25637659
[1] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[2] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[3] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[4] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[5] Li Long, Xiao Rang, Zhang Yongling. Effects of Combined Application of Nitrogen, Phosphorus and Potassium on Seed Maize Yield and Economic Benefit [J]. Crops, 2022, 38(5): 111-117.
[6] Li Yanlu, Wang Junpeng, Yu Xinzhi, Wei Honglei, Chen Qiyu, Zhao Hongxiang, Xu Chen, Bian Shaofeng, Zhang Zhian. Effects of Mulching Different Plastic Films on Accumulation and Distribution of Dry Matter and Nitrogen in Maize in Cold and Cool Areas [J]. Crops, 2022, 38(5): 124-129.
[7] Zhang Jianye, Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin. The Effects of S-ABA on Germination and Growth of Maize under Salt-Alkali Stress [J]. Crops, 2022, 38(5): 167-173.
[8] Zhou Chao, Zhang Tiantian, Yang Li’na, Zhang Yong, Ma Chong, Dai Weicheng, Wu Cuixia, Song Min. Systemic Distribution of Flonicamid in Maize and Its Activity Effect against Rhopalosiphum maidis with Root Absorption [J]. Crops, 2022, 38(5): 261-266.
[9] Duan Mengran, Liu Fengze, Ge Jianrong, Yi Hongmei, Yang Hongming, Gao Yuqian, Yue Pengwu, Ma Wenyu, Ban Xiuli, Wang Fengge. Purity Identification of SSR Molecular Markers for Main Maize Varieties in Jilin Province [J]. Crops, 2022, 38(5): 34-41.
[10] Wang Yuanyuan, Gu Zihan, Chen Pingping, Yi Zhenxie. Study on Feasibility of Seasonal Substituted Planting of Maize to Rice in Cd Contaminated Paddy Field [J]. Crops, 2022, 38(4): 187-192.
[11] Wang Jiabao, Ji Huaiyuan, Mei Jiafa, Tao Zhiguo, Shu Zhifeng, Jiang Sanqiao. The Breeding of New Maize Variety Quankeyu 900 and Its Cultivation, Seed Production Techniques [J]. Crops, 2022, 38(4): 267-270.
[12] Xu Shiying, Wang Ning, Cheng Hao, Feng Wanjun. Dynamic Changes of Seedling Traits among Maize Hybrids and Their Parents in Response to Low Nitrogen Stress [J]. Crops, 2022, 38(4): 90-98.
[13] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
[14] Zhang Jun, Chen Shunquan, Zhang Wenqing, Li Gaochao, Bell. Adaptability of Ten Maize Varieties in Cameroon [J]. Crops, 2022, 38(3): 87-91.
[15] Cao Liru, Lu Xiaomin, Wang Guorui, Dang Zun, Qiu Tian, Qiu Jianjun, Tian Yunfeng, Wang Zhenhua, Dang Yongfu. Effects of Foliar Spraying with Carbon-Adsorbed Polyglutamic Acid on Growth and Development of Maize [J]. Crops, 2022, 38(2): 158-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[2] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[3] Yuan Wang,Ze Guo,Xiaohui Li,Shixiao Xu,Xuexia Xing,Siqi Zhang,Jia He,Chao Liu,Fang Chen,Tiezhao Yang. Effects of Meloidogyne incognita Infection on Tobacco Root System under Different Temperatures[J]. Crops, 2018, 34(4): 161 -166 .
[4] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum[J]. Crops, 2018, 34(4): 167 -174 .
[5] Chengxun Li,Aiping Li,Xiaoyu Xu,Kaibin Zheng. Discussion on the Mechanism of Stress Resistance of Pigeonpea and Application Prospect in Fujian Province[J]. Crops, 2018, 34(4): 28 -31 .
[6] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars[J]. Crops, 2018, 34(4): 69 -78 .
[7] Mingcong Zhang,Yingce Zhan,Songyu He,Xijun Jin,Mengxue Wang,Chunyuan Ren,Yuxian Zhang. Effects of Different Nitrogen Fertilizer and Density Level on Dry Matter Accumulation and Yield of Adzuki Bean[J]. Crops, 2018, 34(1): 141 -146 .
[8] Chunlei Wang,Zhijun Fang,Yanrui Xu,Xiaoping Lu,Chunhua Mu,Kai Shan,Lujiang Hao. Effects of Starane on the Community Diversity of Maize Root Endophytes Analyzed Using High-Throughput Sequencing Technology[J]. Crops, 2018, 34(1): 160 -165 .
[9] Yanfang Hao,Liangqun Wang,Yong Liu,Wei Zhang,Wei Yang,Hongyan Bai,Bo Wu. Establishment of Sorghum Cell Suspensions with Young Leaves[J]. Crops, 2018, 34(1): 35 -40 .
[10] Wei Zhang,Liangqun Wang,Yong Liu,Yanfang Hao,Wei Yang,Hongyan Bai,Bo Wu. Optimization of the Factors Related to the Efficiency of Agrobacterium-Mediated Transformation of Sorghum[J]. Crops, 2018, 34(1): 56 -61 .