Crops ›› 2022, Vol. 38 ›› Issue (5): 167-173.doi: 10.16035/j.issn.1001-7283.2022.05.024
Previous Articles Next Articles
Zhang Jianye(), Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin()
[1] | 郭皓升. 中国玉米产业面临的挑战与机遇. 现代管理科学, 2020(2):31-33. |
[2] |
Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45(2):437-448.
doi: 10.2135/cropsci2005.0437 |
[3] | 范惠玲, 白生文, 朱雪峰, 等. 油菜及其近缘种种子萌发期耐盐碱性差异. 作物杂志, 2019(3):178-184. |
[4] |
Zhang W J, Yuan N, Su H B, et al. Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS ONE, 2014, 9(1):e84750.
doi: 10.1371/journal.pone.0084750 |
[5] | Cheng T L, Chen J H, Zhang J B, et al. Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance. Frontiers in Plant Science, 2015, 6:30-42. |
[6] | Lu N W, Duan B L, Li C Y. Physiological responses to drought and enhanced UV-B radiation in two contrasting. Picea Asperata Populations, 2007, 37(7):1253-1262. |
[7] | Yang T, Poovaiah B W. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(6):4097-4102. |
[8] |
Shaheen H L, Iqbal M, Azeem M, e al. K-priming positively modulates growth and nutrient status of salt-stressed cotton (Gossypium hirsutum) seedlings. Archives of Agronomy and Soil Science, 2016, 62(6):759-768.
doi: 10.1080/03650340.2015.1095292 |
[9] |
Ruiz K B, Biondi S, Martinez E A, et al. Quinoa-a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems, 2016, 150(2):357-371.
doi: 10.1080/11263504.2015.1027317 |
[10] | 曹荷莉, 丁日升, 薛富岚. 不同水盐胁迫对番茄生长发育和产量的影响研究. 灌溉排水学报, 2019, 38(2):29-35. |
[11] |
Liu B S, Kang C L, Wang X, et al. Physiological and morphological responses of Leymus chinensis to saline-alkali stress. Grassland Science, 2015, 61(4):217-226.
doi: 10.1111/grs.12099 |
[12] |
Hoai N T T, Shim I S, Kobayashi K, et al. Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regulation, 2003, 41(2):159-164.
doi: 10.1023/A:1027305522741 |
[13] |
Ahmad P, Jaleel C A, Salem M A, et al. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 2020, 30:161-175.
doi: 10.3109/07388550903524243 |
[14] |
Niu X, Bressan R A, Paul M, et al. Ion Homeostasis in NaCl Stress Environments. Plant Physiology, 1995, 109(3):735-742.
pmid: 12228628 |
[15] |
Feng X, Xu Y Q, Peng L, et al. TaEXPB7-B,a β-expansin gene involved in low-temperature stress and abscisic acid responses,promotes growth and cold resistance in Arabidopsis thaliana. Journal of Plant Physiology, 2019, 240:153004.
doi: 10.1016/j.jplph.2019.153004 |
[16] |
Yan Y, Liu W, Wei Y W, et al. MeCIPK 23 interacts with Whirly transcription factors to activate abscisic acid biosynthesis and regulate drought resistance in cassava. Plant Biotechnology Journal, 2020, 18(7):1504-1506.
doi: 10.1111/pbi.13321 pmid: 31858710 |
[17] | Yang T, Lv R, Li J, et al. Phytochrome A and B negatively regulate salt stress tolerance of nicotiana tobacum via abscisic acid-jasmonic acid synergistic cross talk. Plant and Cell Physiology, 2018, 59(11):2381-2393. |
[18] | 彭云玲, 李伟丽, 王坤泽, 等. NaCl胁迫对玉米耐盐系与盐敏感系萌发和幼苗生长的影响. 草业学报, 2012, 21(4):62-71. |
[19] |
单皓, 张虎, 崔爱民, 等. 外源生长调节物质对盐胁迫下玉米种子萌发的影响. 中国农业科技导报, 2018, 20(8):82-90.
doi: 10.13304/j.nykjdb.2018.0288 |
[20] |
Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 2002, 53(379):2401-2410.
pmid: 12432032 |
[21] |
Zong Y Z, Wang W F, Xue Q W, et al. Interactive effects of elevated CO2 and drought on photosynthetic capacity and PSII performance in maize. Photosynthetica, 2014, 52(1):63-70.
doi: 10.1007/s11099-014-0009-x |
[22] | 罗青红, 寇云玲, 史彦江, 等. 6种杂交榛对新疆盐碱土的生理适应性研究. 西北植物学报, 2013, 33(9):1867-1873. |
[1] | Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151. |
[2] | Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192. |
[3] | Zhang Ruidong, Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong. Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress [J]. Crops, 2022, 38(6): 234-240. |
[4] | Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41. |
[5] | Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110. |
[6] | Li Long, Xiao Rang, Zhang Yongling. Effects of Combined Application of Nitrogen, Phosphorus and Potassium on Seed Maize Yield and Economic Benefit [J]. Crops, 2022, 38(5): 111-117. |
[7] | Li Yanlu, Wang Junpeng, Yu Xinzhi, Wei Honglei, Chen Qiyu, Zhao Hongxiang, Xu Chen, Bian Shaofeng, Zhang Zhian. Effects of Mulching Different Plastic Films on Accumulation and Distribution of Dry Matter and Nitrogen in Maize in Cold and Cool Areas [J]. Crops, 2022, 38(5): 124-129. |
[8] | Dong Yang. Study on the Physiological Response of Broomcorn Millet to Different Herbicides [J]. Crops, 2022, 38(5): 255-260. |
[9] | Zhou Chao, Zhang Tiantian, Yang Li’na, Zhang Yong, Ma Chong, Dai Weicheng, Wu Cuixia, Song Min. Systemic Distribution of Flonicamid in Maize and Its Activity Effect against Rhopalosiphum maidis with Root Absorption [J]. Crops, 2022, 38(5): 261-266. |
[10] | Duan Mengran, Liu Fengze, Ge Jianrong, Yi Hongmei, Yang Hongming, Gao Yuqian, Yue Pengwu, Ma Wenyu, Ban Xiuli, Wang Fengge. Purity Identification of SSR Molecular Markers for Main Maize Varieties in Jilin Province [J]. Crops, 2022, 38(5): 34-41. |
[11] | Zhu Hang, Cui Fangqing, Lu Chuanli, Chen Weiwei, Li Xuhui, Lu Siqi, Zhang Xiangbo, Zhao Hua, Qi Yongwen. Analysis of Carotenoid Content in Maize Inbred Lines with Different Color Grains [J]. Crops, 2022, 38(5): 62-68. |
[12] | Wang Yuanyuan, Gu Zihan, Chen Pingping, Yi Zhenxie. Study on Feasibility of Seasonal Substituted Planting of Maize to Rice in Cd Contaminated Paddy Field [J]. Crops, 2022, 38(4): 187-192. |
[13] | Wang Jiabao, Ji Huaiyuan, Mei Jiafa, Tao Zhiguo, Shu Zhifeng, Jiang Sanqiao. The Breeding of New Maize Variety Quankeyu 900 and Its Cultivation, Seed Production Techniques [J]. Crops, 2022, 38(4): 267-270. |
[14] | Xu Shiying, Wang Ning, Cheng Hao, Feng Wanjun. Dynamic Changes of Seedling Traits among Maize Hybrids and Their Parents in Response to Low Nitrogen Stress [J]. Crops, 2022, 38(4): 90-98. |
[15] | Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199. |
|