Crops ›› 2022, Vol. 38 ›› Issue (5): 167-173.doi: 10.16035/j.issn.1001-7283.2022.05.024

Previous Articles     Next Articles

The Effects of S-ABA on Germination and Growth of Maize under Salt-Alkali Stress

Zhang Jianye(), Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin()   

  1. College of Plant Protection, Shandong Agricultural University, Taiʼan 271018, Shandong, China
  • Received:2021-06-26 Revised:2021-11-01 Online:2022-10-15 Published:2022-10-19

Abstract:

Taking Denghai 605 as material, the effects of S-ABA soaking on corn seed germination and activity, and the effects of S-ABA seed dressing and spraying on corn growth under salt-alkali stress were studied. The result indicated: treatments with different concentrations of NaCl could inhibit the germination of corn seeds. Seed soaking with S-ABA could reduce the damage of salt stress to seeds. The best effect was obtained when the concentration of S-ABA was 6mg/L under the condition of 90mmol/L NaCl concentration, and the germination rate was as high as 95.00%. Compared with the control, the increase rate of α-amylase activity was 83.33%; under the conditions of greenhouse saline-alkali soil culture, S-ABA seed dressing and spraying treatment both could significantly improve the salt-alkali resistance of corn. The salt-alkali resistance of the treatment was the best when the S-ABA seed dressing concentration was 2.0mg/10kg and the S-ABA spraying concentration was 50mg/L. Compared with the control, each growth index was significantly improved. Through the combination of the two treatments, the salt-alkali resistance of maize had been further improved, and the effect was better than any single treatment in seed dressing or spraying.

Key words: Maize, Salt-alkali stress, S-ABA, Seed treatment, Physiological characteristics

Table 1

Effects of different concentrations of NaCl treatments on maize germination"

处理
Treatment
发芽势
Germination
potential (%)
发芽率
Germination
percentage (%)
根长
Root length
(cm)
芽长
Bud length
(cm)
根鲜重
Root fresh
weight (g)
芽鲜重
Bud fresh
weight (g)
α-淀粉酶活性
α-amylase activity
[mg/(min·g)]
Y0 95.00±0.17a 96.67±0.38a 15.35±0.24a 7.83±0.15a 3.45±0.03a 2.34±0.05a 4.14±0.29a
Y1 80.00±0.42b 93.33±0.25a 9.84±0.20b 6.39±0.20b 3.06±0.03b 1.97±0.01b 3.31±0.11b
Y2 76.67±1.04b 90.00±0.13a 7.58±0.19c 4.61±0.13c 2.27±0.01c 1.47±0.04c 2.15±0.14c
Y3 48.33±0.50c 78.33±0.33b 4.25±0.41d 2.37±0.08d 1.23±0.01d 0.74±0.02d 1.83±0.11d
Y4 33.33±0.50d 71.67±0.22c 3.13±0.14e 1.21±0.18e 0.46±0.03e 0.36±0.04e 1.21±0.13e
Y5 20.00±0.42e 55.00±0.63d 2.01±0.16f 0.68±0.36f 0.41±0.03f 0.18±0.03f 0.85±0.07f

Table 2

Effects of different concentrations of S-ABA on maize germination"

处理
Treatment
发芽势
Germination
potential (%)
发芽率Germination
percentage (%)
根长
Root length
(cm)
芽长
Bud length
(cm)
根鲜重
Root fresh
weight (g)
芽鲜重
Bud fresh
weight (g)
α-淀粉酶活性
α-amylase activity
[mg/(min·g)]
T0 93.33±0.38a 98.33±0.19a 15.13±0.18a 7.75±0.12a 3.56±0.02a 2.35±0.03a 4.06±0.11a
T1 46.67±0.20e 73.33±0.28d 3.83±0.10f 2.14±0.09f 1.19±0.02f 0.69±0.03f 1.74±0.23e
T2 58.33±0.21d 80.00±0.07c 4.42±0.05e 2.88±0.10e 1.62±0.02e 0.96±0.02e 2.06±0.11d
T3 63.33±0.20c 90.00±0.07b 5.10±0.06d 3.30±0.07d 1.92±0.01d 1.35±0.02d 2.53±0.21c
T4 73.33±0.28b 95.00±0.07a 6.52±0.08b 4.23±0.09b 2.53±0.02b 1.63±0.02b 3.19±0.17b
T5 66.67±0.15c 88.33±0.20b 5.97±0.14c 3.84±0.06c 2.22±0.02c 1.47±0.01c 2.92±0.14b

Table 3

The effect of S-ABA seed dressing treatment on maize seed germination and seedling growth"

处理
Treatment
发芽势
Germination
potential (%)
发芽率
Germination
percentage (%)
株高
Plant height
(cm)
根长
Root length
(cm)
地上鲜重
Aboveground
fresh weight (g)
地下鲜重
Underground
fresh weight (g)
S1 85.00±0.48a 98.33±0.29a 42.39±0.07a 43.47±0.17a 3.18±0.07a 5.08±0.04a
S2 26.67±0.44f 66.67±0.25d 32.27±0.16e 25.41±0.19f 2.08±0.12e 2.56±0.05e
S3 43.33±0.28e 83.33±0.18c 35.67±0.10d 27.81±0.06e 2.31±0.03d 2.62±0.03e
S4 51.67±0.23d 86.67±0.23bc 36.80±0.18c 29.67±0.17d 2.42±0.08d 2.99±0.08d
S5 61.67±0.21c 88.33±0.29bc 37.52±0.22c 33.52±0.10b 2.57±0.05c 3.25±0.03c
S6 70.00±0.09b 91.67±0.21b 40.45±0.32b 33.33±0.12b 2.87±0.02b 3.73±0.02b
S7 55.00±0.09d 86.67±0.23bc 37.32±0.07c 30.62±0.02c 2.80±0.05b 3.63±0.01b

Fig.1

The effects of S-ABA seed dressing treatment on maize seedling root vigor and chlorophyll content Different letters indicate significant difference at 0.05 level, the same below"

Fig.2

The effects of S-ABA seed dressing treatment on root vigor and chlorophyll content of maize seedlings"

Fig.3

The effects of spraying treatment with S-ABA on root vigor and chlorophyll content of maize seedlings"

Fig.4

The effects of spraying treatment with S-ABA on the antioxidant enzyme activity of maize seedlings"

Fig.5

The effects of seed dressing and spray mixing with S- ABA on root vigor and chlorophyll content of maize"

Fig.6

Effects of S-ABA seed dressing and spray treatment on the antioxidant enzyme activities of maize seedlings"

[1] 郭皓升. 中国玉米产业面临的挑战与机遇. 现代管理科学, 2020(2):31-33.
[2] Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45(2):437-448.
doi: 10.2135/cropsci2005.0437
[3] 范惠玲, 白生文, 朱雪峰, 等. 油菜及其近缘种种子萌发期耐盐碱性差异. 作物杂志, 2019(3):178-184.
[4] Zhang W J, Yuan N, Su H B, et al. Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS ONE, 2014, 9(1):e84750.
doi: 10.1371/journal.pone.0084750
[5] Cheng T L, Chen J H, Zhang J B, et al. Physiological and proteomic analyses of leaves from the halophyte Tangut Nitraria reveals diverse response pathways critical for high salinity tolerance. Frontiers in Plant Science, 2015, 6:30-42.
[6] Lu N W, Duan B L, Li C Y. Physiological responses to drought and enhanced UV-B radiation in two contrasting. Picea Asperata Populations, 2007, 37(7):1253-1262.
[7] Yang T, Poovaiah B W. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(6):4097-4102.
[8] Shaheen H L, Iqbal M, Azeem M, e al. K-priming positively modulates growth and nutrient status of salt-stressed cotton (Gossypium hirsutum) seedlings. Archives of Agronomy and Soil Science, 2016, 62(6):759-768.
doi: 10.1080/03650340.2015.1095292
[9] Ruiz K B, Biondi S, Martinez E A, et al. Quinoa-a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems, 2016, 150(2):357-371.
doi: 10.1080/11263504.2015.1027317
[10] 曹荷莉, 丁日升, 薛富岚. 不同水盐胁迫对番茄生长发育和产量的影响研究. 灌溉排水学报, 2019, 38(2):29-35.
[11] Liu B S, Kang C L, Wang X, et al. Physiological and morphological responses of Leymus chinensis to saline-alkali stress. Grassland Science, 2015, 61(4):217-226.
doi: 10.1111/grs.12099
[12] Hoai N T T, Shim I S, Kobayashi K, et al. Accumulation of some nitrogen compounds in response to salt stress and their relationships with salt tolerance in rice (Oryza sativa L.) seedlings. Plant Growth Regulation, 2003, 41(2):159-164.
doi: 10.1023/A:1027305522741
[13] Ahmad P, Jaleel C A, Salem M A, et al. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology, 2020, 30:161-175.
doi: 10.3109/07388550903524243
[14] Niu X, Bressan R A, Paul M, et al. Ion Homeostasis in NaCl Stress Environments. Plant Physiology, 1995, 109(3):735-742.
pmid: 12228628
[15] Feng X, Xu Y Q, Peng L, et al. TaEXPB7-B,a β-expansin gene involved in low-temperature stress and abscisic acid responses,promotes growth and cold resistance in Arabidopsis thaliana. Journal of Plant Physiology, 2019, 240:153004.
doi: 10.1016/j.jplph.2019.153004
[16] Yan Y, Liu W, Wei Y W, et al. MeCIPK 23 interacts with Whirly transcription factors to activate abscisic acid biosynthesis and regulate drought resistance in cassava. Plant Biotechnology Journal, 2020, 18(7):1504-1506.
doi: 10.1111/pbi.13321 pmid: 31858710
[17] Yang T, Lv R, Li J, et al. Phytochrome A and B negatively regulate salt stress tolerance of nicotiana tobacum via abscisic acid-jasmonic acid synergistic cross talk. Plant and Cell Physiology, 2018, 59(11):2381-2393.
[18] 彭云玲, 李伟丽, 王坤泽, 等. NaCl胁迫对玉米耐盐系与盐敏感系萌发和幼苗生长的影响. 草业学报, 2012, 21(4):62-71.
[19] 单皓, 张虎, 崔爱民, 等. 外源生长调节物质对盐胁迫下玉米种子萌发的影响. 中国农业科技导报, 2018, 20(8):82-90.
doi: 10.13304/j.nykjdb.2018.0288
[20] Jiang M, Zhang J. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany, 2002, 53(379):2401-2410.
pmid: 12432032
[21] Zong Y Z, Wang W F, Xue Q W, et al. Interactive effects of elevated CO2 and drought on photosynthetic capacity and PSII performance in maize. Photosynthetica, 2014, 52(1):63-70.
doi: 10.1007/s11099-014-0009-x
[22] 罗青红, 寇云玲, 史彦江, 等. 6种杂交榛对新疆盐碱土的生理适应性研究. 西北植物学报, 2013, 33(9):1867-1873.
[1] Zhang Dongxia, Qin Anzhen. Relationships among Crop Evapotranspiration, Soil Moisture and Temperature in Winter Wheat-Summer Maize Cropping System [J]. Crops, 2022, 38(6): 145-151.
[2] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[3] Zhang Ruidong, Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong. Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress [J]. Crops, 2022, 38(6): 234-240.
[4] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[5] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[6] Li Long, Xiao Rang, Zhang Yongling. Effects of Combined Application of Nitrogen, Phosphorus and Potassium on Seed Maize Yield and Economic Benefit [J]. Crops, 2022, 38(5): 111-117.
[7] Li Yanlu, Wang Junpeng, Yu Xinzhi, Wei Honglei, Chen Qiyu, Zhao Hongxiang, Xu Chen, Bian Shaofeng, Zhang Zhian. Effects of Mulching Different Plastic Films on Accumulation and Distribution of Dry Matter and Nitrogen in Maize in Cold and Cool Areas [J]. Crops, 2022, 38(5): 124-129.
[8] Dong Yang. Study on the Physiological Response of Broomcorn Millet to Different Herbicides [J]. Crops, 2022, 38(5): 255-260.
[9] Zhou Chao, Zhang Tiantian, Yang Li’na, Zhang Yong, Ma Chong, Dai Weicheng, Wu Cuixia, Song Min. Systemic Distribution of Flonicamid in Maize and Its Activity Effect against Rhopalosiphum maidis with Root Absorption [J]. Crops, 2022, 38(5): 261-266.
[10] Duan Mengran, Liu Fengze, Ge Jianrong, Yi Hongmei, Yang Hongming, Gao Yuqian, Yue Pengwu, Ma Wenyu, Ban Xiuli, Wang Fengge. Purity Identification of SSR Molecular Markers for Main Maize Varieties in Jilin Province [J]. Crops, 2022, 38(5): 34-41.
[11] Zhu Hang, Cui Fangqing, Lu Chuanli, Chen Weiwei, Li Xuhui, Lu Siqi, Zhang Xiangbo, Zhao Hua, Qi Yongwen. Analysis of Carotenoid Content in Maize Inbred Lines with Different Color Grains [J]. Crops, 2022, 38(5): 62-68.
[12] Wang Yuanyuan, Gu Zihan, Chen Pingping, Yi Zhenxie. Study on Feasibility of Seasonal Substituted Planting of Maize to Rice in Cd Contaminated Paddy Field [J]. Crops, 2022, 38(4): 187-192.
[13] Wang Jiabao, Ji Huaiyuan, Mei Jiafa, Tao Zhiguo, Shu Zhifeng, Jiang Sanqiao. The Breeding of New Maize Variety Quankeyu 900 and Its Cultivation, Seed Production Techniques [J]. Crops, 2022, 38(4): 267-270.
[14] Xu Shiying, Wang Ning, Cheng Hao, Feng Wanjun. Dynamic Changes of Seedling Traits among Maize Hybrids and Their Parents in Response to Low Nitrogen Stress [J]. Crops, 2022, 38(4): 90-98.
[15] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[2] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[3] Yuan Wang,Ze Guo,Xiaohui Li,Shixiao Xu,Xuexia Xing,Siqi Zhang,Jia He,Chao Liu,Fang Chen,Tiezhao Yang. Effects of Meloidogyne incognita Infection on Tobacco Root System under Different Temperatures[J]. Crops, 2018, 34(4): 161 -166 .
[4] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum[J]. Crops, 2018, 34(4): 167 -174 .
[5] Chengxun Li,Aiping Li,Xiaoyu Xu,Kaibin Zheng. Discussion on the Mechanism of Stress Resistance of Pigeonpea and Application Prospect in Fujian Province[J]. Crops, 2018, 34(4): 28 -31 .
[6] Xingchuan Zhang, Wenxuan Huang, Kuanyu Zhu, Zhiqin Wang, Jianchang Yang. Effects of Nitrogen Rates on the Nitrogen Use Efficiency and Agronomic Traits of Different Rice Cultivars[J]. Crops, 2018, 34(4): 69 -78 .
[7] Mingcong Zhang,Yingce Zhan,Songyu He,Xijun Jin,Mengxue Wang,Chunyuan Ren,Yuxian Zhang. Effects of Different Nitrogen Fertilizer and Density Level on Dry Matter Accumulation and Yield of Adzuki Bean[J]. Crops, 2018, 34(1): 141 -146 .
[8] Chunlei Wang,Zhijun Fang,Yanrui Xu,Xiaoping Lu,Chunhua Mu,Kai Shan,Lujiang Hao. Effects of Starane on the Community Diversity of Maize Root Endophytes Analyzed Using High-Throughput Sequencing Technology[J]. Crops, 2018, 34(1): 160 -165 .
[9] Yanfang Hao,Liangqun Wang,Yong Liu,Wei Zhang,Wei Yang,Hongyan Bai,Bo Wu. Establishment of Sorghum Cell Suspensions with Young Leaves[J]. Crops, 2018, 34(1): 35 -40 .
[10] Wei Zhang,Liangqun Wang,Yong Liu,Yanfang Hao,Wei Yang,Hongyan Bai,Bo Wu. Optimization of the Factors Related to the Efficiency of Agrobacterium-Mediated Transformation of Sorghum[J]. Crops, 2018, 34(1): 56 -61 .