Crops ›› 2022, Vol. 38 ›› Issue (4): 9-13.doi: 10.16035/j.issn.1001-7283.2022.04.002

Previous Articles     Next Articles

Four Major Regulatory Pathways of Potato Tuber Development

Chen Yuzhen1(), Tang Guangbin2, Ma Xianxin2, Tian Guiyun2, Yu Hongxin2, Luo Yingluo2, Fan Mingshou3, Jia Liguo3()   

  1. 1College of Chemistry and Environment, Hohhot Minzu College, Hohhot 010051, Inner Mongolia, China
    2Hulun Buir Agricultural Reclamation Sheltara Farm Co., Ltd., Hulun Buir 021012, Inner Mongolia, China
    3College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2021-08-10 Revised:2022-06-08 Online:2022-08-15 Published:2022-08-22
  • Contact: Jia Liguo E-mail:chenyuzhen818@126.com;nndjialiguo@163.com

Abstract:

Tuber is harvesting organ, whose development and regulatory mechanism represent a significant biological challenge. Four primary regulatory pathways, comprising sucrose signalling, photoperiod, phytohormone, water and nutrition regulation, were proposed after gathering and analysing a large body of literature. The subsequent study direction was proposed based on the research progress of four primary regulatory pathways.

Key words: Potato, Tuber development, Regulation

[1] Zierer W, Rüscher D, Sonnewald U, et al. Tuber and tuberous root development. Annual Review of Plant Biology, 2021, 72(1):551-580.
doi: 10.1146/annurev-arplant-080720-084456
[2] 单建伟, 柳俊, 索海翠, 等. 糖信号调控马铃薯块茎发育的研究进展. 华中农业大学学报, 2021, 40(4):45-53.
[3] Plantenga F, Bergonzi S, Abelenda J A, et al. The tuberization signal StSP6A represses flower bud development in potato. Journal of Experimental Botany, 2019, 70(3):937-948.
doi: 10.1093/jxb/ery420 pmid: 30481308
[4] 石永春, 王旭, 王潇然, 等. 蔗糖信号调控植物生长和发育的研究进展. 植物生理学报, 2019, 55(11):1579-1586.
[5] 谢婷婷, 柳俊. 光周期诱导马铃薯块茎形成的分子机理研究进展. 中国农业科学, 2013, 46(22):4657-4664.
[6] Garner N, Jennet B. The induction and development of potato microtubers in vitro on media free of growth regulating substances. Annals of Botany, 1989(6):663-674.
[7] 梁俊梅, 贾立国, 段玉, 等. 模拟干旱胁迫对马铃薯组培苗发育及试管薯形成的影响. 分子植物育种, 2020, 18(5):1617-1625.
[8] 孙梦遥. 糖对马铃薯微型薯诱导机制的研究. 兰州:兰州理工大学, 2016.
[9] Debast S, Nunes-Nesi A, Hajirezaei M R, et al. Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting. Plant Physiology, 2011, 156(4):1754-1771.
doi: 10.1104/pp.111.179903
[10] Chen L Q, Qu X Q, Hou B H, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science, 2012, 335:207-211.
doi: 10.1126/science.1213351
[11] Riesmeier J W, Willmitzer L, Frommer W B. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO Journal, 1994, 13:1-7.
doi: 10.1002/j.1460-2075.1994.tb06229.x pmid: 8306952
[12] Chincinska I A, Liesche J, Krugel U, et al. Sucrose transporter StSUT 4 from potato affects flowering,tuberization,and shade avoidance response. Plant Physiology, 2008, 146(2):515-528.
doi: 10.1104/pp.107.112334 pmid: 18083796
[13] Viola R, Roberts A G, Haupt S, et al. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell, 2001, 13:385-398.
pmid: 11226192
[14] Zrenner R, Salanoubat M, Willmitzer L, et al. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant Journal, 1995, 7:97-107.
pmid: 7894514
[15] Ferreira S J, Senning M, Sonnewald S, et al. Comparative transcriptome analysis coupled to X-ray CT reveals sucrose supply and growth velocity as major determinants of potato tuber starch biosynthesis. BMC Genomics, 2010, 11(1):1-17.
doi: 10.1186/1471-2164-11-1
[16] Chapman H W. Tuberization in the potato plant. Physiologia Plantarum, 1958, 11:215-224.
doi: 10.1111/j.1399-3054.1958.tb08460.x
[17] Abelenda J A, Navarro C, Prat S. Flowering and tuberization:a tale of two night shades. Trends in Plant Science, 2014, 19(2):115-122.
doi: 10.1016/j.tplants.2013.09.010 pmid: 24139978
[18] Turck F, Fornara F, Coupland G. Regulation and identity of florigen:FLOWERING LOCUS T moves center stage. Annual Review of Plant Biology, 2008, 59(1):573-594.
doi: 10.1146/annurev.arplant.59.032607.092755
[19] Navarro C, Abelenda J A, Cruz-Oro E, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature, 2011, 478:119-122.
doi: 10.1038/nature10431
[20] Sharma P, Lin T, Hannapel D J. Targets of the StBEL5 transcription factor include the FT ortholog StSP6A. Plant Physiology, 2016, 170:310-324.
doi: 10.1104/pp.15.01314 pmid: 26553650
[21] Lehretz G G, Sonnewald S, Hornyik C, et al. Post-transcriptional regulation of FLOWERING LOCUS T modulates heat-dependent source-sink development in potato. Current Biology, 2019, 29:1614-1624.
doi: S0960-9822(19)30425-7 pmid: 31056391
[22] Abelenda J A, Bergonzi S, Oortwijn M, et al. Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Current Biology, 2019, 29:1178-1186.
doi: S0960-9822(19)30157-5 pmid: 30905604
[23] Chen H, Rosin F M, Prat S. Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiology. 2003, 132:1391-1404.
pmid: 12857821
[24] Cho S K, Sharma P, Butler N M, et al. Polypyrimidine tract-binding proteins of potato mediate tuberization through an interaction with StBEL5 RNA. Journal of Experimental Botany, 2015, 66(21):6835-6847.
doi: 10.1093/jxb/erv389
[25] Mahajan A, Bhogale S, Kang I H, et al. The mRNA of a Knotted1-like transcription factor of potato is phloem mobile. Plant Molecular Biology, 2012, 79(6):595-608.
doi: 10.1007/s11103-012-9931-0 pmid: 22638904
[26] Yumul R E, Kim Y J, Liu X, et al. POWERDRESS and diversified expression of the MIR172 gene family bolster the floral stem cell network. PLoS Genetics, 2013, 9(1):e1003218.
doi: 10.1371/journal.pgen.1003218
[27] Martin A, Adam H, Díaz-Mendoza M, et al. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development, 2009, 136:2873-2881.
doi: 10.1242/dev.031658
[28] Bhogale S, Mahajan AS, Natarajan B, et al. MicroRNA156:a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiology, 2014, 164:1011-1027.
doi: 10.1104/pp.113.230714 pmid: 24351688
[29] Okazawa Y. Studies on the relation between the tuber formation of potato and its natutal gibberellin content. Japanese Journal of Crop Science, 1960, 29(1):121-124.
doi: 10.1626/jcs.29.121
[30] Xu X, van Lammeren A A M, Vermeer E, et al. The role of gibberellin,abscisic acid,and sucrose in the regulation of potato tuber formation in vitro. Plant Physiology, 1998, 117:575-584.
pmid: 9625710
[31] Carrera E, Bou J, García-Martínez J L, et al. Changes in GA 20-oxidase gene expression strongly affect stem length,tuber induction and tuber yield of potato plants. Plant Journal, 2010, 22(3):247-256.
doi: 10.1046/j.1365-313x.2000.00736.x
[32] Kloosterman B, Navarro C, Bijsterbosch G, et al. StGA2ox 1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant Journal, 2010, 52(2):362-373.
doi: 10.1111/j.1365-313X.2007.03245.x
[33] Roumeliotis E, Kloosterman B, Oortwijn M, et al. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. Journal of Experimental Botany, 2012, 63(12):4539-4547.
doi: 10.1093/jxb/ers132 pmid: 22689826
[34] Romanov G A, Aksenova N P, Konstantinova T N, et al. Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic lines of potato in vitro. Plant Growth Regulation, 2000, 32(2/3):245-251.
doi: 10.1023/A:1010771510526
[35] Tao G Q, Stuart D, Yong J, et al. Promotion of shoot development and tuberisation in potato by expression of a chimaeric cytokinin synthesis gene at normal and elevated CO2 levels. Functional Plant Biology, 2010, 37(1):43-54.
doi: 10.1071/FP07032
[36] 蒙美莲, 刘梦芸, 门福义, 等. 赤霉素和脱落酸对马铃薯块茎形成的影响. 马铃薯杂志, 1994, 8(3):134-137.
[37] Vreugdenhil D, Bradshaw J, Gebhardt C, et al. Potato biology and biotechnology:advances and perspectives. Amsterdam: Elsevier, 2007.
[38] Deblonde P, Ledent J F. Effects of moderate drought conditions on green leaf number,stem height,leaf length and tuber yield of potato cultivars. European Journal of Agronomy, 2001, 14(1):31-41.
doi: 10.1016/S1161-0301(00)00081-2
[39] 贾立国, 陈玉珍, 苏亚拉其其格, 等. 灌溉马铃薯水分高效利用途径及其机理. 土壤通报, 2018, 49(1):226-231.
[40] Haverkort A J, Waart M, Bodlaender K. The effect of early drought stress on numbers of tubers and stolons of potato in controlled and field conditions. Potato Research, 1990, 33(1):89-96.
doi: 10.1007/BF02358133
[41] 乌兰, 石晓华, 杨海鹰, 等. 苗期水分亏缺对马铃薯产量形成的影响. 中国马铃薯, 2015, 29(2):80-84.
[42] 李发虎, 贾立国, 樊明寿. 水分对马铃薯源、库、流调控的研究进展. 作物杂志, 2015(6):22-26.
[43] 贾立国, 陈玉珍, 樊明寿, 等. 干旱对马铃薯光合特性及块茎形成的影响. 干旱区资源与环境, 2018, 32(2):188-193.
[44] 苏亚拉其其格, 樊明寿, 陈玉珍, 等. 马铃薯非结构性碳水化合物含量对水分胁迫的响应. 植物生理学报, 2019, 55(12):1839-1850.
[45] 敖孟奇, 秦永林, 陈杨, 等. 农田土壤Nmin对马铃薯块茎形成的影响. 中国马铃薯, 2013, 27(5):302-305.
[46] Tiwari J K, Buckseth T, Devi S, et al. Physiological and genome-wide RNA-sequencing analyses identify candidate genes in a nitrogen-use efficient potato cv. Kufri Gaurav. Plant Physiology and Biochemistry, 2020, 154:171-183.
doi: 10.1016/j.plaphy.2020.05.041
[47] Zheng H, Wang Y, Zhao J. Tuber formation as influenced by the C:N ratio in potato plants. Journal of Plant Nutrition and Soil Science, 2018, 181:686-693.
doi: 10.1002/jpln.201700571
[48] Suyala Q, Jia L, Qin Y, et al. Effects of different nitrogen forms on potato growth and development. Journal of Plant Nutrition, 2017, 40(11):1151-1159.
[49] Gao Y, Jia L, Hu B, et al. Potato stolon and tuber growth influenced by nitrogen form. Plant Production Science, 2014, 17(2):138-143.
doi: 10.1626/pps.17.138
[50] Meng L, Zhang T, Chen Y, et al. The influence of endogenous sugar on potato tuberization in in vivo conditions. American Journal of Potato Research, 2020, 97(8):297-307.
doi: 10.1007/s12230-020-09782-4
[1] Xie Kuizhong, Sun Xiaohua, Luo Aihua, Liu Yongqiang, Tang Dejing, Zhu Yongyong, Hu Xinyuan. Effects of Basal Zinc Fertilizer on Activities of Disease Resistance-Related Enzymes, Soil Borne Diseases and Yield of Potato under Long-Term Continuous Cropping [J]. Crops, 2022, 38(4): 154-159.
[2] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[3] Liu Ju, Li Guangcun, Duan Shaoguang, Hu Jun, Jian Yinqiao, Liu Jiangang, Jin Liping, Xu Jianfei. The Effects of Different Night Temperature Treatments on in vitro Tuberization and Related-Genes Expression in Potato [J]. Crops, 2022, 38(3): 92-98.
[4] Zhang Yudan, Ma Xiaohan, Li Junling, Xu Zicheng, Jia Wei, Shi Qiuhuan. Inhibitory Effect of Chlorogenic Acid on Phytophthora nicotiana and Its Control Effect on Tobacco Black Shank Disease [J]. Crops, 2022, 38(2): 230-236.
[5] Yang Zhinan, Huang Jinwen, Han Fanxiang, Li Yawei, Ma Jiantao, Chai Shouxi, Cheng Hongbo, Yang Delong, Chang Lei. Effects of Straw Strip Mulching on Soil Temperature and Yield of Potato Field in Rain-Fed Region in Northwest China [J]. Crops, 2022, 38(1): 196-204.
[6] Liu Yajun, Wang Wenjing, Wang Honggang, Wang Qi, Hu Qiguo, Chu Fengli. Effects of Crop Rotation on Soil Microbial Community in Sweet Potato Field [J]. Crops, 2021, 37(6): 122-128.
[7] Gao Jia, Wang Jiao, Wang Song, Liu Hongjian, Kang Jia, Shen Hong, Wang Haili, Ren Shaoyong. Effects of Biochar-Based Fertilizer on Soil Urease Activity and Yield of Potato [J]. Crops, 2021, 37(6): 134-138.
[8] Luo Lei, Li Yajie, Yao Yanhong, Li Fengxian, Fan Yi, Dong Aiyun, Liu Huixia, Niu Caiping, Li Deming. Effects of Planting Small Whole Potatoes with Different Specifications and Seed Dressing on the Growth and Yield of Potatoes in Continuous Cropping Land [J]. Crops, 2021, 37(6): 211-216.
[9] Li Xin, Jin Guanghui, Wang Pengcheng, Wang Ziwen. Analysis of Stability of Potato Varieties (Strains) Starch and Yield Performance [J]. Crops, 2021, 37(6): 51-57.
[10] Zhang Wei, Li Zhixin, Zhao Xue, Zhang Jinpeng, Fu Chunjiang, Yu Qianqian, Liu Weiping. Development of a Double Test Strip for the Detection of Potato Virus X and Y [J]. Crops, 2021, 37(6): 62-66.
[11] Hu Qiguo, Liu Yajun, Wang Wenjing, Wang Qi, Wang Honggang, Chu Fengli. Effects of Sweet Potato Rotation and Intercropping on the Microbial Community of Rhizosphere Soil [J]. Crops, 2021, 37(5): 153-159.
[12] Lou Shubao, Li Fengyun, Tian Guokui, Wang Haiyan, Tian Zhendong, Wang Lichun, Liu Xicai, Wang Hui. Evaluation of Germplasms for Resistance to Potato Late Blight and Molecular Markers Assisted Screening [J]. Crops, 2021, 37(4): 196-201.
[13] Yang Ping, Chen Yuli, Gong Fajiang, Bi Haibin, Gao Minghui. Bulking Characteristics of Potato Tubers and Its Correlation with Tuber Fresh Weight [J]. Crops, 2021, 37(2): 130-134.
[14] Qiu Tian, Niu Lili, Zhu Jiang, Cai Fuge, Wang Qingwei. Effects of Three Growth Regulators on the Growth of Potato Test-Tube Seedlings [J]. Crops, 2021, 37(2): 160-164.
[15] Wang Yujiao, Cao Qi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Shi Shubing. Effects of Chemical Regulation on Wheat Yield and Quality under Different Soil Conditions [J]. Crops, 2021, 37(2): 96-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!