Crops ›› 2023, Vol. 39 ›› Issue (1): 196-200.doi: 10.16035/j.issn.1001-7283.2023.01.029

Previous Articles     Next Articles

Effects of EDTA on Growth and Physiological Characteristics of Cucumber Seedlings under Chromium Stress

Zhang Panpan(), Wu Xiong, Ji Jiangtao, Wang Xiaolin   

  1. College of Life Sciences, Yulin University, Yulin 719000, Shaanxi, China
  • Received:2021-09-15 Revised:2021-11-12 Online:2023-02-15 Published:2023-02-22

Abstract:

In order to explore the physiological regulation mechanism of ethylenediamine tetraacetic acid (EDTA) under alleviating chromium stress in cucumber seedlings, “Hengyou Vegetable Garden” was used as test materials in soil culture with 120mg/L chromium ion solution to simulate chromium stress, the effects of different concentrations of EDTA (W1: 1mmol/L, W2: 2mmol/L and W3: 4mmol/L) on seedling growth and physiological characteristics under chromium stress were studied. The results showed that, W2 and W3 treatments promoted the increase of plant height and dry matter weight of shoot in seedling. Meanwhile, W2 treatment increased the photochemical and non-photochemical quenching coefficients of leaf photosystem. Peroxidase (POD) activity in leaves and roots of seedlings was significantly increased after the treatments, while malondialdehyde (MDA) content in leaves was significantly decreased under W2 and W3 treatments, and MDA content in roots was significantly decreased under W3 treatment. The content of soluble protein in seedling leaves decreased, while the content of proline had been increased under the treatments. In conclusion, 1-2mmol/L EDTA under chromium stress could improve photosynthesis of cucumber seedlings, enhance POD activity and osmotic regulation ability, slow down the level of membrane lipid peroxidation of seedlings, and promote shoot morphological development of seedlings, thus effectively alleviating the harm of chromium stress on seedlings.

Key words: EDTA, Cucumis sativus L., Leaf, Chromium stress, Physiological characteristics

Table 1

Effects of EDTA on morphological characteristics of cucumber seedlings under chromium stress"

处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter (mm)
绿叶面积
Area of green leaves (cm2)
总根长
Total length of root (cm)
根平均直径
Mean diameter of root (mm)
CK 8.20±0.36c 4.01±0.26a 164.32±9.00a 1649.19±24.01a 0.28±0.02a
W1 7.87±0.29c 3.55±0.44a 105.76±8.09c 962.35±38.88b 0.31±0.02a
W2 9.07±0.60b 4.21±0.22a 126.85±11.45b 1089.04±94.14b 0.30±0.01a
W3 10.47±0.21a 3.83±0.76a 171.15±9.39a 1696.37±39.73a 0.28±0.01a

Table 2

Effects of EDTA on dry matter accumulation of cucumber seedlings under chromium stress"

处理
Treatment
地上部干重
Dry weight of
shoot (g)
地下部干重
Dry weight of
root (g)
根冠比
Root-shoot
ratio
CK 0.675±0.024b 0.056±0.004a 0.083±0.008b
W1 0.561±0.022c 0.053±0.002a 0.094±0.002a
W2 0.749±0.029a 0.051±0.005a 0.069±0.006c
W3 0.788±0.045a 0.059±0.003a 0.087±0.005b

Table 3

Effects of EDTA on chlorophyll fluorescence characteristics of cucumber seedlings under chromium stress"

处理Treatment Fv/Fm ΦPSⅡ qP NPQ
CK 0.77±0.01a 0.57±0.01b 0.78±0.04b 0.28±0.01c
W1 0.74±0.06a 0.63±0.01a 0.83±0.05a 0.35±0.02b
W2 0.77±0.01a 0.55±0.01c 0.77±0.06b 0.34±0.02b
W3 0.76±0.01a 0.54±0.01c 0.77±0.08b 0.40±0.01a

Fig.1

Effects of EDTA on POD activity in leaves and roots of cucumber seedlings under chromium stress Different letters in the figure represent significant difference between different treatments at the 0.05 level, the same below"

Fig.2

Effects of EDTA on MDA content in leaves and roots of cucumber seedling under chromium stress"

Fig.3

Effects of EDTA on soluble protein and Pro contents in leaves of cucumber seedling under chromium stress"

[1] 龚继明. 重金属污染的缓与急. 植物生理学报, 2014, 50(5):567-568.
[2] 闫树熙, 刘昆, 郭利锋. 西部资源富集地区资源环境承载力评价研究——以国家级能源化工基地榆林市为例. 中国农业资源与区划, 2020, 41(7):57-64.
[3] 王荧. 榆林市主要公路农田土壤重金属污染特征分析. 黑龙江农业科学, 2019(9):59-63.
[4] 朱玉高. 陕北煤矿区农田土壤重金属污染现状及修复技术研究. 洁净煤技术, 2014, 20(5):105-108.
[5] Tajammul H, Mohammad S, Sheo M P, et al. Ethylene needs endogenous hydrogen sulfide for alleviating hexavalent chromium stress in Vigna mungo L. and Vigna radiata L.. Environmental Pollution, 2021, 290:117968.
doi: 10.1016/j.envpol.2021.117968
[6] 杨静雅, 符倩, 张皓月, 等. 土施纳米氧化锌对蚯蚓生理和黄瓜幼苗生长的影响. 农业环境科学学报, 2021, 40(3):525-534.
[7] 廉华, 马光恕, 李梅, 等. 棘孢木霉菌剂对黄瓜生理特性及产质量的影响. 中国农业大学学报, 2021, 26(6):42-52.
[8] Grčman H, Velikonja-Bolta Š, Vodnik D, et al. EDTA enhanced heavy metal phytoextra ction:Metal accumulation,leaching and toxicity. Plant and Soil, 2001, 235(1):105-114.
doi: 10.1023/A:1011857303823
[9] 骆永明. 强化植物修复的螯合诱导技术及其环境风险. 土壤, 2000, 32(2):57-61,74.
[10] Chaney R L, Brown J C, Tiffin L O. Obligatory reduction of ferric chelateiniron uptake by soybeans. Plant Physiology, 1972, 50:208-213.
doi: 10.1104/pp.50.2.208 pmid: 16658143
[11] Liphadzi M S, Kirkham M B, Mankin K R, et al. EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long- term sewagesludge farm. Plant and Soil, 2003, 257(1):171-182.
doi: 10.1023/A:1026294830323
[12] 邓本良, 田静, 高晓晓, 等. EDTA对重金属镉胁迫下玉米种子发芽率的影响. 安徽农业科学, 2020, 48(19):43-44,47.
[13] 杨培玉, 杨水平. 镉污染农田施用EDTA对水稻生长发育的影响. 安徽农业科学, 2009, 35(19):8941-8943.
[14] 赵辉, 郝振萍. EDTA对镉胁迫下小白菜幼苗保护酶活性的影响. 金陵科技学院学报, 2015, 31(3):73-77.
[15] 吴顺, 罗光宇, 彭丽霞. EDTA对铅胁迫下萝卜芽苗菜生长的影响. 北方园艺, 2009(1):65-67.
[16] 陈庆华, 王永, 陈庆丰. 铬对黄瓜种子萌发及早期生长发育的影响. 广东农业科学, 2009(8):75-77.
[17] 陶洪斌, 林杉. 打孔称重法与复印称重法和长宽校正法测定水稻叶面积的方法比较. 植物生理学通讯, 2006, 42(3):496-498.
[18] 杨丽涛, 李杨瑞, 莫家让. 喷施“多效好”对甘蔗叶片几个生理生化特性的效应研究初报. 广西农学院学报, 1990(1):79-83.
[19] 李合生, 孙群, 赵世杰, 等. 植物生理生化试验原理和技术. 北京: 高等教育出版社, 2000:195-261.
[20] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006:210-211.
[21] 王三根. 植物生理学实验教程. 北京: 科学出版社, 2017:212-214.
[22] 将先军, 骆永明, 赵其国, 等. 镉污染土壤植物修复的EDTA调控机理. 土壤学报, 2003, 40(2):205-209.
[23] 杨德光, 陈庚, 吴宝欣, 等. 去雄携带顶叶对玉米光合特性、干物质积累及产量的影响. 西北农业学报, 2021, 30(12):1-9.
[24] 方怡然, 薛立. 盐胁迫对植物叶绿素荧光影响的研究进展. 生态科学, 2019, 38(3):225-234.
[25] 逄洪波, 张雨欣, 刘宁, 等. 镉胁迫对欧洲千里光幼苗生理生化指标的影响. 沈阳农业大学学报, 2015, 46(4):492-496.
[26] 赵明德, 李惠梅, 马静, 等. 碱胁迫对燕麦幼苗生理指标的响应. 西南大学学报(自然科学版), 2021, 43(10):58-65.
[27] 罗巧玉, 王彦龙, 陈志, 等. 水分逆境对发草脯氨酸及其代谢途径的影响. 草业学报, 2021, 30(5):75-83.
[1] Chen Dong, Zou Jing, Guo Ganggang, Dai Wendian, Song Shaoguang, Huang Ying. Effects of Different Specifications of Seedling Trays on Quality and Main Physiological Characteristics of Tobacco Seedlings [J]. Crops, 2023, 39(1): 129-135.
[2] Wang Heshou. Effects of Different Nitrogen Application Rates on Nutritional Quality of Vegetable Sweet Potato [J]. Crops, 2022, 38(6): 208-213.
[3] Zhang Ruidong, Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong. Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress [J]. Crops, 2022, 38(6): 234-240.
[4] Zhang Jianye, Du Qingzhi, Liu Xiang, Deng Jiahui, Jiao Qin, Gong Luo, Jiang Xingyin. The Effects of S-ABA on Germination and Growth of Maize under Salt-Alkali Stress [J]. Crops, 2022, 38(5): 167-173.
[5] Li Rui, Dong Liqiang, Shang Wenqi, Yu Guangxing, Dai Guijin, Wang Zheng, Li Yuedong. Effects of Water Spraying Interval at Seedling Stage on Growth and Yield of Rice [J]. Crops, 2022, 38(5): 249-254.
[6] Dong Yang. Study on the Physiological Response of Broomcorn Millet to Different Herbicides [J]. Crops, 2022, 38(5): 255-260.
[7] Tian Chaohua, Zhang Xuewei, Guo Wei, Liu Wenjian, Liu Yonglai, Cao Mingfeng, Zhu Li, Deng Yong, Jing Yanqiu, Liu Dong. Distribution Characteristics of Soil Available Boron in Guiyang Tobacco Area and Its Effects on the Boron and Main Nitrogen-Containing Compounds Contents of Tobacco Leaves [J]. Crops, 2022, 38(3): 218-224.
[8] Qin Na, Zhu Cancan, Dai Shutao, Song Yinghui, Li Junxia, Wang Chunyi. Fine Mapping and Functional Analysis of Yellow Leaf Mutant ylm-1 in Foxtail Millet [J]. Crops, 2022, 38(3): 55-62.
[9] Huang Xianya, Qin Xu, Yang Xiangyan, Li Juxin, Peng Xinyi, Wu Mi, Jin Gang, Chen Tao. Analysis of Morphological and Structural Characteristics of Sisal Leaf Fiber Cells [J]. Crops, 2022, 38(3): 99-103.
[10] Yan Xiaocui, Duan Zhenying, Yang Huali, Yao Zhanjun, Li Zaifeng. QTLs Mapping of Leaf Rust Resistance in Wheat Variety Zhoumai 22 [J]. Crops, 2022, 38(2): 69-74.
[11] Zhang Siwei, Li Jin’ao, Liu Boyuan, Jiang Yuchen, Zhong Qiu, Lei Yunkang, Zhang Mingyue, Zhao Mingqin. Effects of Topping Method on Nitrogen Accumulation and Quality of Cigar Tobacco Leaves [J]. Crops, 2022, 38(1): 184-189.
[12] Zhou Delong, Meng Lingcong, Zheng Shubo, Wang Nan, Li Mu, Wang Xinqi, Lu Shi, Wang Min, Liu Wenguo, Lu Ming. Establishing of a Fast and Efficient Testing Method of Transgenic Maize [J]. Crops, 2022, 38(1): 65-69.
[13] Liang Haiyan, Li Hai, Ding Chao, Yang Fang, Song Xiaoqiang, Deng Yarui, Liu Guishan, Lin Fengxian, Zhang Xiangyu, Su Zhanming, Jiang Chao. Effects of Potassium Fertilizer on Morphology, Mechanical Properties, Physiological Characteristics and Lodging Resistance of Broom Corn Millet [J]. Crops, 2021, 37(6): 177-181.
[14] Yu Julong, Zhang Guo, Zhao Laicheng, Yao Kebing, Luo Guanghua, Fang Jichao, Zhang Jianhua, Jiao Yang, Shu Zhaolin. Control Effects of Different Seed Treatments on the Rice Leaf Folder under Machine-Planting Condition [J]. Crops, 2021, 37(6): 224-229.
[15] Chen Fang, Gu Xiaoping, Yu Fei, Hu Jiamin, Zuo Jin, Hu Xinxin, Liu Yupeng, Hu Feng. Response of Photosynthetic Physiological Characteristics of Pepper in Guizhou under Drought Stress [J]. Crops, 2021, 37(5): 160-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!