Crops ›› 2023, Vol. 39 ›› Issue (1): 201-206.doi: 10.16035/j.issn.1001-7283.2023.01.030

Previous Articles     Next Articles

Effects of Different Nitrogen Sources on the Growth and Development of Tobacco Seedlings

Li Diqin1(), Yao Shaoyun1, Wang Qing1, Yi Ke2, Liu Yiyun1,3, Tang Xiaoming4, Peng Yuanyuan1, Fu Changwu4()   

  1. 1College of Agronomy, Hunan Agricultural University, Changsha 410128, Hunan, China
    2China Tobacco Hunan Industrial Co., Ltd. of China National Tobacco Corporation, Changsha 410014, Hunan, China
    3China Tobacco Guizhou Industrial Co., Ltd. of China National Tobacco Corporation, Guiyang 550001, Guizhou, China
    4Zhangjiajie Branch of Hunan Tobacco Company, Zhangjiajie 427000, Hunan, China
  • Received:2021-08-22 Revised:2022-06-14 Online:2023-02-15 Published:2023-02-22

Abstract:

In order to explore the effects of different nitrogen forms sources on the quality, growth and development of tobacco seedlings, a new flue-cured tobacco strain HN2146 was used as material. The effects of four different nitrogen forms on the growth and development characteristics of tobacco seedlings were carried out by hydroponic experiments with ammonium nitrate (NH4NO3), calcium nitrate [Ca(NO3)2], ammonium sulfate [(NH4)2SO4)] and urea [CO(NH2)2]. The results showed that the maximum leaf area of tobacco seedling was 100.4cm2 with the calcium nitrate treatment. The highest protein content in tobacco leaves and roots were the treatment with ammonium sulfate, which were 151.452 and 79.367μg/g FW, respectively. The activity of nitrate reductase shown calcium nitrate > ammonium nitrate > ammonium sulfate > urea treatment. The absorption capacity of nitrogen shown ammonium nitrate > ammonium sulfate > calcium nitrate > urea treatment. Through the principal component analysis of the relevant agronomic traits and physiological characteristics of tobacco seedlings in different treatments, the comprehensive scores were expressed as calcium nitrate > ammonium nitrate > ammonium sulfate > urea treatment. Nitrate nitrogen and ammonium nitrogen as the only nitrogen source were beneficial to the growth and development of tobacco seedlings, while urea as the only nitrogen source had the worst effects. The findings of this study served as a theoretical foundation and point of reference for the application of various nitrogen sources during the development of flue-cured tobacco seedlings.

Key words: Flue-cured tobacco, Tobacco seedlings, Nitrogen source form, Growth and development

Table 1

Agronomic characters of tobacco seedlings of the different treatments"

处理后天数
Days after
treatment (d)
处理
Treatment
最大叶长
Length of the
maximum leaf (cm)
最大叶宽
Width of the
maximum leaf (cm)
最大叶面积
Areas of the
maximum leaf (cm2)
苗高
Seedling
height (cm)
0 T1 3.57±0.13a 3.45±0.04a 7.82±0.19a 0.44±0.02a
T2 3.43±0.06a 3.39±0.11a 7.38±0.30a 0.44±0.01a
T3 3.45±0.15a 3.42±0.02a 7.49±0.33a 0.47±0.03a
T4 3.64±0.06a 3.45±0.04a 7.97±0.05a 0.52±0.02a
5 T1 6.14±0.07a 5.13±0.05a 20.00±0.01a 0.82±0.02a
T2 5.44±0.11b 4.99±0.07a 17.23±0.27b 0.90±0.03a
T3 5.17±0.06c 4.48±0.07b 14.69±0.07c 0.80±0.06a
T4 5.18±0.06c 4.52±0.07b 14.87±0.35c 0.90±0.07a
10 T1 10.08±0.14a 7.73±0.11b 49.47±1.28a 1.27±0.06ab
T2 10.12±0.12a 8.03±0.09a 51.61±1.23a 1.36±0.10a
T3 6.70±0.21b 5.33±0.05c 22.68±0.48b 1.13±0.05b
T4 6.65±0.07b 5.35±0.15c 22.57±0.87b 1.15±0.09b
15 T1 13.90±0.73a 10.86±0.33a 95.68±3.93a 2.22±0.04a
T2 14.46±0.46a 10.94±0.10a 100.41±4.09a 2.32±0.16a
T3 8.00±0.14b 6.38±0.13b 32.37±1.08b 1.58±0.10b
T4 7.28±0.18b 5.60±0.25b 25.74±1.51b 1.35±0.10b

Fig.1

Protein content of leaf and root of the different treatments Different lowercase letters indicate significant difference at the 0.05 level, the same below"

Fig.2

NR activity of the different treatments"

Table 2

Nitrogen content in different parts of tobacco seedlings of the different treatments"

部位
Location
处理
Treatment
全氮含量
Nitrogen content
(mg/g FW)
铵态氮含量
Ammonium nitrogen content
(μg/g FW)
硝态氮含量
Nitrate nitrogen content
(mg/g FW)
尿素态氮含量
Urea nitrogen content
(mg/g FW)
叶Leaf T1 38.903±0.346a 75.436±2.340b 74.367±1.111b 0.142±0.009b
T2 36.960±0.342a 50.632±1.741c 245.950±2.669a 0.125±0.007b
T3 37.723±0.225a 108.290±1.696a 6.473±0.965c 0.158±0.007b
T4 30.353±0.949b 47.584±1.391c 17.729±1.758c 0.204±0.007a
根Root T1 21.227±0.770a 20.271±1.081b 25.517±1.072b 0.119±0.006b
T2 16.353±0.585b 17.708±0.658c 85.810±1.885a 0.126±0.007b
T3 20.893±0.555a 38.339±0.516a 0.450±0.041c 0.123±0.006b
T4 10.053±0.469c 15.547±0.662d 0.469±0.035c 0.154±0.006a

Table 3

Eigenvalue, variance contribution rate and cumulative variance contribution rate of principal components"

主成分
Principal
component
特征值
Eigenvalue
方差贡献率
Variance
contribution rate (%)
累计方差贡献率
Cumulative variance
contribution rate (%)
1 4.695 58.687 58.687
2 2.986 37.328 96.015

Table 4

Rotated component matrix of the principle component analysis"

指标
Index
主成分
Principal components
1 2
最大叶面积Areas of the max-leaf (X1) 0.977 -0.091
苗高Seedlings height (X2) 0.977 0.028
蛋白质含量Protein content (X3) -0.168 0.980
硝酸还原酶活性NR activity (X4) 0.983 -0.136
全氮含量Nitrogen content (X5) 0.525 0.841
铵态氮含量Ammonium nitrogen content (X6) -0.206 0.975
硝态氮含量Nitrate nitrogen content (X7) 0.852 -0.341
尿素态氮含量Urea nitrogen content (X8) -0.864 -0.473

Table 5

Different processing principal component scores, comprehensive scores and rankings"

处理
Treatment
Y1得分
Y1 score
Y2得分
Y2 score
综合得分Y
Comprehensive score Y
均值
Average
排名
Rank
T1-1 1.52 0.66 1.19 1.10 2
T1-2 1.38 0.56 1.06
T1-3 1.49 0.39 1.06
T2-1 2.65 -1.06 1.21 1.15 1
T2-2 2.56 -0.89 1.22
T2-3 2.34 -1.03 1.03
T3-1 -1.14 2.47 0.27 0.08 3
T3-2 -1.37 2.35 0.08
T3-3 -1.69 2.40 -0.10
T4-1 -2.56 -1.83 -2.28 -2.34 4
T4-2 -2.31 -1.88 -2.15
T4-3 -2.86 -2.15 -2.58
[1] 钟思荣, 龚丝雨, 张世川, 等. 作物不同基因型耐低氮性和氮效率研究进展. 核农学报, 2018, 32(8):1656-1663.
doi: 10.11869/j.issn.100-8551.2018.08.1656
[2] Peng S, Buresh R J, Huang J, et al. Improving nitrogen fertilization in rice by site-specific N management. a review. Agronomy for Sustainable Development, 2010, 30(3):649-656.
doi: 10.1051/agro/2010002
[3] 马征, 崔荣宗, 贾德, 等. 氮磷钾平衡施用对大葱产量、养分吸收及利用的影响. 中国土壤与肥料, 2019, 2(3):109-114.
[4] 张延春, 陈治锋, 龙怀玉, 等. 不同氮素形态及比例对烤烟长势、产量及部分品质因素的影响. 植物营养与肥料学报, 2005, 11(6):787-792.
[5] 李文卿, 陈顺辉, 曾文龙, 等. 氮肥施用与烤烟氮氮素营养关系研究. 中国烟草科学, 2008, 29(4):38-41.
[6] 岳俊芹, 刘健康, 刘卫群. 不同氮素形态对烤烟叶片碳氮代谢关键酶活性及化学成分的影响. 河南农业大学学报, 2004, 38(2):155-158.
[7] 徐光辉, 熊淑萍, 王璐, 等. 氮素形态对烤烟成熟期叶片组织结构及叶绿素含量的影响. 中国农学通报, 2008, 24(9):233-236.
[8] 杨志晓, 王轶, 王志红, 等. 烤烟氮素营养研究进展. 江西农业学报, 2012, 24(1):72-76.
[9] Kumar R, Taware R, Gaur V S, et al. Differential regulation of two glutamine synthetase genes by a single of transcription factor. The Plant Journal, 2008, 56(1):73-85.
doi: 10.1111/j.1365-313X.2008.03573.x
[10] Stanulović V S, Garcia de Veas Lovillo R M, Labruyère W T, et al. The 3′-UTR of the glutamine-synthetase gene interacts specifically with upstream regulatory elements,contains mRNA-instability elements and is involved in glutamine sensing. Biochimie, 2006, 88(9):1255-1264.
pmid: 16839656
[11] Kumar R, Taware R, Gaur V S, et al. Influence of nitrogen on the expression of TaDof 1 transcription factor in wheat and its relationship with photo synthetic and ammonium assimilating efficiency. Molecular Biology Reports, 2009, 36(8):2209-2220.
doi: 10.1007/s11033-008-9436-8
[12] 谢晋, 严玛丽, 陈建军, 等. 不同铵态氮硝态氮配比对烤烟产量、质量及其主要化学成分的影响. 植物营养与肥料学报, 2014, 20(4):1030-1037.
[13] 介晓磊, 黄向东, 刘世亮, 等. 不同氮素供应对烟草品质指标的影响. 土壤通报, 2007, 38(6):1150-1153.
[14] 刘挺. 不同形态氮肥配比对会理烤烟生长发育和品质的影响. 湖南农业科学, 2018(5):49-52.
[15] 宋科. 铵硝混合营养对烤烟苗期根系生长的影响. 北京: 中国农业科学院, 2017.
[16] 黄丹, 杨富文, 刘琳, 等. 氮及氮素形态对烤烟叶片叶绿素光合荧光参数的影响. 作物杂志, 2021(1):150-159.
[17] 施卫省, 唐辉, 王亚明, 等. 包膜尿素在烟草生产上的初步经济评价. 昆明理工大学学报(理工版), 2005, 30(1):86-89.
[18] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(1):248-254.
doi: 10.1016/0003-2697(76)90527-3
[19] 肖浪涛, 王三根. 植物生理学实验技术. 北京: 中国农业出版社, 2005.
[20] 范小玉, 陈雷, 贺群领, 等. 黄淮海中南片小粒花生主要农艺性状、品质性状相关性及主成分分析. 山东农业科学, 2021, 53(1):20-25.
[21] 董宝珠, 李宏光, 杨红武, 等. 不同氮素形态及配比营养液对烟苗生长及生理特性的影响. 作物研究, 2015, 29(1):26-31,36.
[22] 贺文俊, 田培, 肖磊磊, 等. 水肥一体化模式下氮素形态及配比对烤烟生长及品质的影响. 贵州农业科学, 2019, 47(3):45-49.
[23] 叶莉莎, 陈双林. 氮素形态及配比对雷竹光合特性和氮代谢酶活性的影响. 生态学杂志, 2016, 35(9):2355-2360.
[24] 张梦, 梁永江, 张长华, 等. 不同氮源对烤烟漂浮育苗氮素利用及烟苗生长的影响. 植物营养与肥料学报, 2012, 18(1):139-145.
[25] May S K, 顾立江, 程红梅. 植物中硝酸还原酶和亚硝酸还原酶的作用. 生物技术进展, 2011, 1(3):159-164.
[26] Ma B L, Morrison M J, Dwyer L M. Canopy light reflectance and field greenness to assess nitrogen fertilization and yield of maize. Agronomy Journal, 1996, 88(6):915-920.
doi: 10.2134/agronj1996.00021962003600060011x
[27] 欧阳铎声, 苏国栋. 氮肥形态对烤烟生长发育及品质的影响. 湖南农学院学报, 1991, 1(增1):319-325.
[28] Lin Y C, Zhang J, Gao W C, et al. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism. BMC Plant Biology, 2017, 17(1):1-13.
doi: 10.1186/s12870-016-0951-9
[29] 丁冉, 马宇平, 周浩, 等. 烟草中蛋白质研究概述. 广州化工, 2014, 42(5):5-8,26.
[1] Wang Dequan, Liu Yang, Liu Jiang, Chen Keling, Wang Yi, Du Chuanyin, Du Yuhai, Ma Xinghua. Research Progress of Furrow and Ridge Rain-Harvesting Farming Technology and its Application Prospects in Flue-Cured Tobacco Production [J]. Crops, 2023, 39(1): 1-5.
[2] Chen Dong, Zou Jing, Guo Ganggang, Dai Wendian, Song Shaoguang, Huang Ying. Effects of Different Specifications of Seedling Trays on Quality and Main Physiological Characteristics of Tobacco Seedlings [J]. Crops, 2023, 39(1): 129-135.
[3] Zhang Yonggang, Ren Zhiguang, Xu Zhiqiang, Liu Jianguo, Zhang Xiaobing, Liu Huabing, Xia Chen, Cheng Changhe. Chemical Quality Evaluation of Flue-Cured Tobacco Based on Maximization of Deviation and BP Neural Network [J]. Crops, 2023, 39(1): 190-195.
[4] Wang Yuan, Wang Jiming, Nian Fuzhao, Zheng Yuanxian, Xu Yinlian, Li Cuifen, Cui Yongquan, Zhang Qifu, Zhao Leifeng, Liao Xiaolin, He Yuansheng. Effects of Continuous Cropping with Rice Hull Biochar on Soil Physical and Chemical Properties and Growth of Flue-Cured Tobacco [J]. Crops, 2023, 39(1): 219-225.
[5] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[6] Chen Yan, Chen Qiang, He Yi, Yu Huiping, Gao Junyi, Zhao Erwei, Lu Yingang. Effects of Tobacco Planting Ecoregions, Varieties and Their Interactions on Polyphenol Content and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(6): 132-138.
[7] Zhang Mingfa, Zhang Sheng, Teng Kai, Chen Qianfeng, Tian Minghui, Jiang Zhimin, Chao Jin, Jian Panfeng, Deng Xiaohua. Effects of Fertilizing with Straw Biochar on Soil pH and Root Growth of Flue-Cured Tobacco in Huayuan, Hunan [J]. Crops, 2022, 38(6): 193-200.
[8] Zhu Lin, Cao Xiang, Deng Xiaohua, Hu Risheng, Pei Xiaodong, Xiang Shipeng, Xiao Zhijun, Wang Weimin, Zhang Cheng, Jiang Zhimin. Characteristics of Water Loss and Pigment Degradation of Xiangyan No.7 Tobacco Leaves during Curing Process [J]. Crops, 2022, 38(5): 174-179.
[9] Jia Guotao, Zhang Junling, Wei Zhuangzhuang, Yuan Qishan, Wang Baolin, Wang Xiaoyu, Ma Shengtao, Yang Xinling, Zhang Ziying, Zhang Shiying, Jia Shiwei, Chen Yang, Liu Huimin. Research on the Regional Characteristics of Contents of Free Amino Acids in Flue-Cured Tobacco Based on Factor Analysis and Cluster Analysis [J]. Crops, 2022, 38(5): 208-214.
[10] Du Fu, Xia Maolin, Liu Xinyuan, Yu Zhaojin, Zhang Zhan, Liu Yunfei, Ji Xiaoming. Effective Effects of Acrylamide/Carboxymethyl Cellulose/Biochar Composite Hydrogel on Cadmium Stress in Tobacco Seedlings [J]. Crops, 2022, 38(4): 138-145.
[11] Sun Kai, Liang Long, Li Zhongbai. Sustainability Evaluation of the Red Rice and Flue-Cured Tobacco Crop System Based on the Improved Emergy Model——A Case Study of Panzhou City, Guizhou Province [J]. Crops, 2022, 38(4): 146-153.
[12] Li Diqin, Peng Yuanyuan, Wang Yan, Li Sijun, Peng Tianwei, Wang Qing, Li Qiang, Xie Huiya. Response of Tobacco Seedling Growth and Development to Combined Application of Brassinolide and Microbial Agents [J]. Crops, 2022, 38(4): 167-171.
[13] Liu Xinya, Chen Xiaolong, Feng Yake, Liu Yang, Duan Weidong, An Xueqiang, Chen Fayuan, Cao Xingbing, Zhao Yuanyuan, Shi Hongzhi. Study on the Suitable Harvest Date of High Availability Upper Leaves of Flue-Cured Tobacco in Southwestern Guizhou [J]. Crops, 2022, 38(4): 227-235.
[14] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[15] Yang Yingyue, Liu Hui, Wang Longfei, Zhao Zhe, Feng Xiaohu, Lai Miao, Zhao Mingqin. Effects of Different Fertilizer Types on Tobacco Planting Soil and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(3): 187-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!