Crops ›› 2021, Vol. 37 ›› Issue (5): 160-165.doi: 10.16035/j.issn.1001-7283.2021.05.024

Previous Articles     Next Articles

Response of Photosynthetic Physiological Characteristics of Pepper in Guizhou under Drought Stress

Chen Fang(), Gu Xiaoping, Yu Fei(), Hu Jiamin, Zuo Jin, Hu Xinxin, Liu Yupeng, Hu Feng   

  1. Mountain Environment and Climate Research Institute of Guizhou Province/Guizhou Provincial Key Laboratory of Climate and Resources, Guiyang 550002, Guizhou, China
  • Received:2020-10-19 Revised:2020-11-16 Online:2021-10-15 Published:2021-10-14
  • Contact: Yu Fei E-mail:1522178306@qq.com;66435101@qq.com

Abstract:

Pepper is one of economic crops in Guizhou, agricultural structure coordination province, which is the leading and influential industries. Most areas in Guizhou belong to karst landforms, poor soil water retention which are prone to drought. It is important to clarify the drought resistance mechanism of pepper which has important theoretical value and practical production significance for realizing the quality and high yield of pepper production in Guizhou. The main pepper variety Lafeng No.3 in Guizhou province was selected for this experiment to study the yield, growth, photosynthetic characteristics and regulation mechanism, and variation law of fruit physiological characteristics of pepper under light (LD), moderate (MD), severe (SD) and extremely severe (TD) drought stress (field water capacity was 70%, 60%, 40% and 20%). With the increase of drought stress, the fruit length, fruit thickness, stem thickness, plant height, single fruit weight, and dry matter content of pepper plants decreased significantly and the decreasing trend became more obvious with the increase of drought stress. Pepper's net photosynthetic rate showed a trend of rising first, then gradually stabilized, and finally gradually decreased with the increase of drought. The maximum net photosynthetic rate, apparent quantum efficiency, stomatal conductance, intercellular CO2 concentration, and transpiration rate all decreased significantly. However, water use efficiency increased significantly. Drought stress inhibited the growth of pepper plants, and the contents of crude fat and crude fiber of pepper decreased significantly. Under LD, the contents of dihydrocapsaicin were significantly lower than those of the control group. While, with the increase of drought stress, the contents of capsaicin and dihydrocapsaicin gradually increased (except LD and TD treatments). In conclusion, in the Karst arid area of Guizhou, mild to moderate water stress (field water capacity 60%-70%) could meet the normal growth requirements of pepper.

Key words: Pepper, Drought stress, Photosynthetic characteristics, Physiological characteristics

Table 1

Comparison of pepper growth under drought stress"

处理
Treatment
始花―盛花期
The first flower-full bloom
盛花―初果期
Flourishing flower-early fruit
初果―盛果期
Early fruit-full fruit
盛果―成熟期
Fruiting-mature
茎粗
Stem diameter
(mm)
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
株高
Plant height
(cm)
CK 9.75±0.63a 89.06±4.87a 11.92±0.46a 111.35±1.55a 12.69±0.56a 126.64±1.78a 12.91±0.41a 133.27±2.77a
LD 9.38±0.26a 87.13±2.88b 11.69±0.16ab 110.22±7.10a 12.40±0.52a 125.95±9.67a 12.78±0.88a 129.74±5.92b
MD 9.17±0.20ab 87.08±5.41b 11.65±0.18ab 109.62±2.53b 12.38±0.41ab 124.66±1.72ab 12.17±0.33ab 126.74±6.41bc
SD 8.93±0.14b 86.97±3.22bc 11.59±0.87b 106.19±2.20bc 12.15±1.25ab 120.73±4.89b 12.15±1.67ab 125.03±2.72c
TD 8.72± 1.05b 82.87±5.10c 10.79±0.73c 104.69±2.57c 11.28±1.26b 114.84±2.98c 11.84±1.10b 119.86±4.80c

Table 2

Comparison of pepper fruit growth under drought stress"

处理
Treatment
产量
Yield (kg)
果粗
Coarse fruit (mm)
果长
Fruit length (cm)
单果重
Single fruit weight (g)
单果干重
Single fruit dry weight (g)
单果含水率
Single fruit moisture (%)
CK 23.90±5.71a 14.95±0.43a 20.73±0.35a 23.91±0.18a 3.44±0.17a 85.61±0.74a
LD 23.47±4.85a 14.59±0.09a 20.57±0.47a 21.63±2.39ab 3.01±0.46b 85.41±3.61ab
MD 22.92±1.23ab 14.16±0.46ab 19.63±0.86ab 21.26±0.45ab 3.02±0.21b 85.74±1.31a
SD 22.77±1.71b 14.15±0.34ab 19.50±1.68b 20.18±1.14ab 3.25±0.23a 83.90±0.30c
TD 21.73±5.29c 11.81±0.33b 19.00±0.23c 18.19±1.40b 2.71±0.13c 85.05±0.42b

Fig.1

Photoreactivity curve of pepper leaves under drought stress"

Table 3

Effects of drought stress on gas exchange parameters of papper leaf"

处理Treatment Amax [μmol/(m2·s)] Rd [μmol CO2/(m2·s)] Q [μmol CO2/(m2·s)] LCP [μmol/(m2·s)] LSP [μmol/(m2·s)] R2
CK 25.813±0.052a 1.451±0.001d 0.089±0.002a 16.831±0.002d 306.865±0.012d 0.999
LD 25.715±0.153a 1.599±0.002c 0.081±0.001bc 17.457±0.002c 334.926±0.016a 0.995
MD 24.629±0.109b 1.547±0.001a 0.085±0.004b 17.578±0.007b 309.039±0.015e 0.992
SD 23.621±0.179c 1.409±0.001e 0.080±0.001bc 16.613±0.014e 311.875±0.013b 0.998
TD 20.593±0.115c 1.679±0.002b 0.071±0.002d 20.521±0.022a 310.563±0.004c 0.996

Table 4

Comparison of photosynthetic indexes under drought conditions"

处理Treatment Gs [molH2O/(m2·s)] Ci (μmol CO2/mol) Tr [mmolH2O/(m2·s)] WUE (μmol/mmol)
CK 0.37±0.047a 334.98±17.14a 4.18±0.372a 3.54±0.184c
LD 0.21±0.041bc 309.54±22.78c 3.22±0.305b 4.32±0.265ab
MD 0.22±0.037bc 322.31±21.28b 2.80±0.279b 4.60±0.244a
SD 0.22±0.039b 322.40±19.51b 3.01±0.318b 4.31±0.205ab
TD 0.18±0.029c 302.85±23.29d 3.48±0.238ab 3.74±0.203bc

Table 5

Correlation analysis of photosynthetic parameters of pepper leaves under drought stress"

指标Index Pn Gs Ci Tr
Pn 1 0.424** -0.940** 0.787**
Gs 0.424** 1 -0.149 0.718**
Ci -0.940** -0.149 1 -0.610**
Tr 0.787** 0.718** -0.610** 1

Table 6

Changes of physiological and biochemical indexes of pepper fruits under drought stress"

处理
Treatment
干物质含量
Dry matter
content (%)
Vc(鲜样)
Vc of fresh sample
(mg/100g)
干样Dry sample
粗脂肪
Crude fat (%)
粗纤维
Crude fiber (%)
辣椒素
Capsaicin (mg/g)
二氢辣椒素
Dihydrocapsaicin (mg/g)
CK 14.50±0.74a 282.78±2.38b 12.81±0.12a 24.88±0.08a 0.163±0.003c 0.050±0.001c
LD 13.72±0.68ab 231.95±1.71c 12.21±0.16bc 23.73±0.05b 0.160±0.001c 0.047±0.003d
MD 14.32±0.60ab 287.17±9.69ab 12.31±0.02b 24.12±0.06ab 0.200±0.001ab 0.060±0.001b
SD 12.58±0.16b 301.24±0.33a 11.94±0.09c 23.06±0.06c 0.250±0.001a 0.070±0.001a
TD 13.64±0.33ab 283.39±5.17b 11.99±0.11bc 24.16±0.16ab 0.177±0.003b 0.057±0.003c
[1] 欧立军, 陈波, 邹学校. 干旱对辣椒光合作用及相关生理特性的影响. 生态学报, 2012, 32(8):2612-2619.
[2] 刘佳, 张玲丽, 颉建明, 等. 干旱气候条件下灌溉方式与灌水定额对辣椒生长的影响. 中国沙漠, 2013, 33(2):373-381.
[3] Shirkole S S, Jayabalan R, Sutar P P. Dry sterilization of paprika (Capsicum annuum L.) by short time-intensive microwave-infrared radiation:establishment of process using glass transition,sorption,and quality degradation kinetic parameters. Innovative Food Science and Emerging Technologies, 2020, 62:102345.
doi: 10.1016/j.ifset.2020.102345
[4] 王海燕, 赵晓红, 吴玉美, 等. 干旱锻炼对提高辣椒抗旱性的形成研究. 云南农业大学学报(自然科学), 2015, 30(1):30-34.
[5] Samarah N H, AL-Quraan N A, Massad R S, et al. Treatment of bell pepper (Capsicum annuum L.) seeds with chitosan increases chitinase and glucanase activities and enhances emergence in a standard cold test. Scientia Horticulture, 2020, 269:109393.
doi: 10.1016/j.scienta.2020.109393
[6] 谢小玉, 马仲炼, 白鹏, 等. 辣椒开花结果期对干旱胁迫的形态与生理响应. 生态学报, 2014, 34(13):3797-3805.
[7] Alice D V, Pia D M, Gokhan Z, et al. Exploring the nutraceutical potential of dried pepper Capsicum annuum L. on market from Altino in Abruzzo region. Antioxidants, 2020, 9(5):2-19.
doi: 10.3390/antiox9010002
[8] 池再香, 杜正静, 陈忠明, 等. 2009-2010年贵州秋、冬、春季干旱气象要素与环流特征分析. 高原气象, 2012, 31(1):176-184.
[9] 宋艳玲, 蔡雯悦, 柳艳菊, 等. 我国西南地区干旱变化及对贵州水稻产量影响. 应用气象学报, 2014, 25(5):550-558.
[10] 严小冬, 李扬, 夏阳, 等. 1961-2016年贵州省持续性干旱特征及成因分析. 中低纬山地气象, 2019, 43(3):1-7.
[11] 陈芳, 谷晓平, 孟平红, 等. 基于GIS的贵州辣椒气候适宜性区划. 中国农业科技导报, 2018, 20(9):79-85.
[12] 陈芳, 刘宇鹏, 谷晓平, 等. 低温对茶树光合特性及产量的影响. 作物杂志, 2018(3):155-161.
[13] 郝建军, 康宗利, 于洋. 植物生理学实验技术. 北京: 化学工业出版社, 2006:182-183.
[14] 白云岗, 刘洪波, 张江辉, 等. 葡萄光合作用光响应曲线拟合模型比较研究. 节水灌溉, 2016(9):8-11.
[15] 刘佳, 郁继华, 徐秉良, 等. 干旱气候条件下水分胁迫对辣椒叶片生理特性的影响. 核农学报, 2012, 26(8):1197-1203.
[16] 王龙飞, 成善汉, 夏枫, 等. 干旱胁迫对海南黄灯笼椒辣味及相关生理生化指标的影响. 热带生物学报, 2018, 9(2):207-213.
[17] 宋志荣. 干旱胁迫对辣椒生理机制的影响. 西南农业学报, 2003, 16(2):53-55.
[18] 胡文海, 曾建军, 曹玉林, 等. 干旱胁迫对两种辣椒叶片气体交换和叶绿素荧光特性的影响. 干旱地区农业研究, 2008, 26(5):156-159.
[19] 胡文海, 曹玉林, 曾建军, 等. 高温干旱对不同品种辣椒生长及呼吸作用的影响. 植物研究, 2008, 28(2):199-204.
[20] 胡能兵, 隋益虎, 舒英杰, 等. 高温干旱胁迫对辣椒热害指标及叶绿素荧光参数Fv/Fm的影响. 基因组学与应用生物学, 2018, 37(12):5421-5428.
[21] 刘晓建, 谢小玉, 薛兰兰. 辣椒开花结果期对干旱胁迫响应机制的研究. 西北农业学报, 2009, 18(5):246-249.
[22] 郭媛姣. 不同灌溉定额和种植方式对大田辣椒生长发育的影响研究. 银川:宁夏大学, 2019.
[23] 杜磊, 赵尊练, 巩振辉, 等. 水分胁迫对线辣椒叶片渗透调节作用的影响. 干旱地区农业研究, 2010, 28(3):188-190.
[24] Rabiza-Świder J, Skutnik E, Jędrzejuk A, et al. Seed browning in pepper (Capsicum annuum L.) fruit during cold storage is inhibited by methyl jasmonate or induced by methyl salicylate. Postharvest Biology and Technology, 2020, 166:111210.
doi: 10.1016/j.postharvbio.2020.111210
[25] 尹明华, 王丽, 徐玉琴, 等. 江西产山药微型块茎萌发苗耐盐性隶属函数及主成分分析. 中草药, 2016, 47(14):2526-2533.
[26] 刘晓建. 高温下辣椒对干旱胁迫响应机制的研究. 重庆:西南大学, 2010.
[27] 侯梦媛. 干旱胁迫对设施甜椒植株内源激素、生长及果实品质的影响. 南京:南京信息工程大学, 2018.
[28] 彭琼, 童建华, 柏连阳, 等. 干旱胁迫对辣椒果实中辣椒素、二氢辣椒素及VC含量的影响. 中国蔬菜, 2015(12):44-47.
[29] 高佳, 张恒嘉, 巴玉春, 等. 调亏灌溉对绿洲灌区膜下滴灌辣椒生长发育和产量的影响. 干旱地区农业研究, 2019, 37(2):25-31.
[30] 宋钊, 余超然, 张白鸽, 等. 涝渍胁迫对辣椒植株表型的影响. 热带作物学报, 2019, 40(2):221-231.
[1] Lü Wei, Ren Guoxiang, Han Junmei, Wen Fei, Wang Ruopeng, Liu Wenping. Effects of Drought Stress on Physiological and Biochemical Indexes of Sesame Seedlings [J]. Crops, 2021, 37(5): 172-175.
[2] Tang Zhiqiang, Zhang Liying, He Na, Ma Zuobing, Zhao Mingzhu, Wang Changhua, Zheng Wenjing, Yin Yong’an, Wang Hui. Effects of Mechanical Direct Dry Seeding on Rice Growth, Photosynthetic Characteristics and Yield [J]. Crops, 2021, 37(5): 87-94.
[3] Pei Zhichao, Zhou Jihua, Xu Xiangdong, Lan Hongliang, Wang Junying, Lang Shuwen, Zhang Weiqiang. Effects of Drought Treatment on Photosynthesis Rate, Antioxidant Properties of Leaves and Yield of Different Maize Varieties [J]. Crops, 2021, 37(5): 95-100.
[4] Song Ruijiao, Feng Caijun, Qi Juncang. Effects of Hydrogen-Rich Water on Barley Seed Germination and Barley Seedling Biomass Distribution under Drought Stress [J]. Crops, 2021, 37(4): 206-211.
[5] Shi Yahan, Du Tianqing, Zhai Hongmei, Yang Shutian, Gong Rui, Li Yuhang, Lu Boyu, Cui Fuzhu, Gao Zhiqiang. Effects of Selenium on Seed Germination, Physiological Characteristics and Nutritional Quality of Kidney Bean [J]. Crops, 2021, 37(3): 210-216.
[6] Shen Jie, Wang Yuguo, Guo Pingyi, Yuan Xiangyang. Effects of Humic Acid on Ascorbate-Glutathione Cycle in the Leaves of Foxtail Millet Seedlings under Drought Stress [J]. Crops, 2021, 37(2): 173-177.
[7] Fu Jing, Yin Haiqing, Wang Ya, Yang Wenbo, Zhang Zhen, Bai Tao, Wang Yuetao, Wang Fuhua, Wang Shengxuan. Effects of Nitrogen Topdressing Models on Root Growth and Grain Yield of Japonica Rice in the Region along Yellow River of Henan Province [J]. Crops, 2021, 37(2): 77-86.
[8] Han Duohong, Wang Enjun, Zhang Yong, Wang Hongxia, Wang Yan, Wang Fu. Effects of Exogenous Spermidine and Glycine Betaine on Seed Germination and Physiological Characteristics of Isatis indigotica Fort. Seedlings under Drought Stress [J]. Crops, 2021, 37(1): 118-123.
[9] Sun Hui, Zhang Liping, Hou Qiling, Bai Xiucheng, Yang Jifang, Zhang Fengting, Zhao Changping. Analysis on the Relationship between Fertility and Photosynthetic Characteristics in the BS Type Photo-Thermal Sensitive Male Sterile Wheat Lines under Controlled Condition [J]. Crops, 2021, 37(1): 7-15.
[10] Deng Wanyue, Leng Qiuyan, Yang Zaijun, Yu Yan, Wu Yichao. Effects of Simulated Drought Stress on the Physiological Indexes and Contents of Active Components of Potted "Chuandanshen 1" [J]. Crops, 2021, 37(1): 74-81.
[11] Yang Juan, Jiang Yangming, Zhou Fang, Zhang Jun, Luo Haideng, Tian Shanjun. Effects of PEG Simulated Drought Stress on Seedling Morphology and Physiological Characteristics of Different Drought-Resistance Maize Varieties [J]. Crops, 2021, 37(1): 82-89.
[12] Wang Qi, Sun Wen, Wu Junying, Liu Jinghui, Zhao Baoping. Effects of Different Irrigation Amounts and Spraying Humic Acid on Photosynthetic Characteristics and Yield of Oat [J]. Crops, 2021, 37(1): 98-103.
[13] Luo Xinglu, Huang Xiaofeng, Wu Meiyan, Liu Shanqian, Zhao Bowei. Studies on Physiological Characteristics and Main Agronomic Traits of Five Cassava Varieties [J]. Crops, 2020, 36(5): 182-187.
[14] Li Guolong, Wu Haixia, Sun Yaqing. Construction of RNAi Expression Vector of BvWRKY23 Gene in Sugar Beet [J]. Crops, 2020, 36(5): 41-47.
[15] Shen Yuxiang, Chen Chaoru, Zhang Xuemei, Zhou Nong, Yang Min, Zhang Jie, Li Kuiyin. Effects of Arbuscular Mycorrhizal Fungi on Seedlings Growth and Photosynthetic Characteristics of Paris polyphylla Smith var. yunnanensis [J]. Crops, 2020, 36(4): 170-177.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!