Crops ›› 2023, Vol. 39 ›› Issue (2): 201-206.doi: 10.16035/j.issn.1001-7283.2023.02.029

Previous Articles     Next Articles

Correlation and Path Analysis of Three Ear Leaves on Yield in Maize

Cui Shuna(), Wang Ye, Lu Yuqing, Pan Jinbao, Zhang Qiuzhi()   

  1. Beijing University of Agriculture, Beijing 100096, China
  • Received:2022-01-27 Revised:2022-02-21 Online:2023-04-15 Published:2023-04-11

Abstract:

Through the correlation analysis of leaf length, width, area of three ear leaves and yield of 168 maize hybrid combinations, the correlations between each characteristic and maize yield were explored, so as to provide a theoretical basis for the breeding of excellent maize varieties. The results showed that, the variation coefficient of plot yield was large, which was 19.27%, the coefficients of variation of three ear leaves characteristics ranged from 6.34% to 9.59%, and the degrees of variation of each characteristic were similar. Correlation analysis showed that, there was a very significant positive correlation between plot yield and three ear leaves characteristics. In path analysis, the positive direct path coefficient of each characteristic on maize yield was as follows: upper ear leaf width, upper ear leaf length, ear leaf area, ear leaf length, lower ear leaf area, lower ear leaf width, lower ear leaf length, ear leaf width and upper ear leaf area, and the negative direct path coefficient was as follows: lower ear leaf length, ear leaf width and upper ear leaf area. Therefore, expanding the ear three leaves area could effectively improve the maize yield, especially the maize hybrids that increased the leaf area by increasing the leaf width under the ear and the leaf length at the ear position are more conducive to the increase of maize yield.

Key words: Maize, Three ear leaves, Yield, Correlation

Table 1

Descriptive statistical results of three ear leaves characteristics and plot yield of maize"

指标
Index
极小值
Minimum
极大值
Maximum
平均
Mean
标准差
Standard deviation
变异系数
Coefficient of variation (%)
小区产量Plot yield (kg) 1.61 5.35 3.71 0.71 19.27
穗上叶面积Upper ear leaf area (cm2) 435.0 750.3 583.2 0.01 9.59
穗位叶面积Ear leaf area (cm2) 493.4 789.8 639.5 0.01 8.76
穗下叶面积Lower ear leaf area (cm2) 483.0 826.7 660.3 0.01 9.20
穗上叶长Upper ear leaf length (cm) 69.0 94.0 82.4 0.06 6.86
穗位叶长Ear leaf length (cm) 75.5 99.5 88.5 0.06 6.34
穗下叶长Lower ear leaf length (cm) 75.0 104.0 91.0 0.06 6.37
穗上叶宽Upper ear leaf width (cm) 7.5 10.8 9.4 0.01 6.61
穗位叶宽Ear leaf width (cm) 7.7 11.2 9.6 0.01 6.46
穗下叶宽Lower ear leaf width (cm) 8.0 11.5 9.7 0.01 7.03

Table 2

Correlations between plot yield and three ear leaves characteristics"

指标Index y x1 x2 x3 x4 x5 x6 x7 x8 x9
y 1
x1 0.396** 1
x2 0.442** 0.936** 1
x3 0.452** 0.793** 0.858** 1
x4 0.260** 0.728** 0.653** 0.493** 1
x5 0.317** 0.654** 0.688** 0.526** 0.925** 1
x6 0.304** 0.562** 0.597** 0.663** 0.808** 0.876** 1
x7 0.299** 0.689** 0.672** 0.635** 0.009 -0.027 -0.038 1
x8 0.282** 0.619** 0.671** 0.643** -0.042 -0.075 -0.074 0.952** 1
x9 0.316** 0.521** 0.575** 0.708** -0.105 -0.127 -0.057 0.878** 0.924** 1

Table 3

Path analysis of plot yield and three ear leaves characteristics"

指标
Index
简单相关系数
Simple correlation coefficient
直接通径系数
Direct path coefficient
间接通径系数Indirect path coefficient 合计
Total
x1 x2 x3 x4 x5 x6 x7 x8 x9
x1 0.40 -1.038 0.000 0.445 0.235 0.355 0.196 -0.141 0.617 -0.411 0.143 1.438
x2 0.44 0.473 -0.976 0.000 0.256 0.317 0.208 -0.151 0.599 -0.445 0.160 -0.033
x3 0.45 0.297 -0.820 0.407 0.000 0.239 0.159 -0.166 0.563 -0.425 0.196 0.153
x4 0.26 0.487 -0.758 0.308 0.146 0.000 0.277 -0.204 0.009 0.027 -0.030 -0.227
x5 0.32 0.301 -0.675 0.326 0.158 0.448 0.000 -0.222 -0.027 0.046 -0.036 0.019
x6 0.30 -0.252 -0.581 0.284 0.196 0.394 0.265 0.000 -0.036 0.046 -0.017 0.552
x7 0.30 0.894 -0.716 0.317 0.187 0.005 -0.009 0.010 0.000 -0.630 0.243 -0.594
x8 0.28 -0.664 -0.644 0.317 0.190 -0.019 -0.021 0.018 0.849 0.000 0.254 0.944
x9 0.32 0.276 -0.540 0.274 0.211 -0.054 -0.039 0.015 0.787 -0.610 0.000 0.044
[1] 汪黎明, 孟昭东, 齐世军. 中国玉米遗传育种. 上海: 上海科学技术出版社, 2020.
[2] 高振环. 玉米品种产量和农艺性状的相关和通径分析. 辽宁农业职业技术学院学报, 2018, 20(2):6-7,10.
[3] 国家统计局. 2021中国农村统计年鉴. 北京: 中国统计出版社, 2021.
[4] 徐磊, 谭福忠, 师臣, 等. 黑龙江省西部干旱区玉米产量与产量构成因素的相关性分析. 黑龙江农业科学, 2020(7):1-6.
[5] 许海涛, 许波, 王友华, 等. 棒三叶对夏玉米光合生理特性、籽粒发育和产量性状的影响. 陕西农业科学, 2018, 64(7):6-10.
[6] 陈勇. 玉米主要株型性状与产量的相关及通径分析. 广东农业科学, 2012, 39(12):15-16,20.
[7] 赵延明, 王华山, 高红玲, 等. 玉米杂交种株型性状与产量的遗传相关和通径分析. 国外农学―杂粮作物, 1999(5):1-3.
[8] 李芳志, 刘丽华, 徐文伟, 等. 杂交玉米穗三叶面积与产量构成的关系. 国外农学―杂粮作物, 1997(3):5-7.
[9] 白永新, 王早荣, 钟改荣, 等. 玉米高配合力亲本自交系、杂交种棒三叶的性状分析及叶面积的相关性研究. 玉米科学, 1999, 7(2):25-27.
[10] 白永新, 王早荣, 陈宝国, 等. 玉米杂交种棒三叶特征及其叶面积与单株穗重、粒重的相关性研究. 华北农学报, 2000(2):32-35.
doi: 10.3321/j.issn:1000-7091.2000.02.007
[11] 于宁宁, 张吉旺, 任佰朝, 等. 综合农艺管理对夏玉米叶片生长发育及内源激素含量的影响. 作物学报, 2020, 46(6):960-967.
doi: 10.3724/SP.J.1006.2020.93050
[12] 张琪, 丛鹏, 彭励. 通径分析在Excel和SPSS中的实现. 农业网络信息, 2007(3):109-110.
[13] 杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法. 生物学通报, 2010, 45(2):4-6.
[14] 杜鹃. 通径分析在Excel和SPSS中的实现. 陕西气象, 2012(1):15-18.
[15] 常雪, 常雪艳, 何康来, 等. 转cry1Ab基因玉米对粘虫的抗性评价. 植物保护学报, 2007, 34(3):225-228.
[16] 孙守钧, 丁秀英, 吴海元, 等. 高粱单叶对籽粒产量贡献率的研究. 国外农学―杂粮作物, 1998, 18(5):38-42.
[17] 任洪雷, 李春霞, 龚士琛, 等. 利用SPSS实现玉米杂交种主要农艺性状与产量的相关和通径分析. 作物杂志, 2019(3):86-90.
[18] 李彦丽, 马亚怀, 胡晓航. 不同玉米品种主要农艺性状与产量的相关和通径分析. 中国糖料, 2020, 42(4):30-35.
[19] 刘江. 玉米穗三叶与其他主要性状的相关研究. 甘肃农业, 2016(19):30-32.
[20] 马静静, 南张杰, 韩俊. 不同玉米品种主要农艺性状相关性分析. 安徽农业科学, 2014, 42(13):3832-3834.
[21] 申卓, 桑立君, 徐涛, 等. 玉米理想株型的主要农艺性状分析. 现代农业科技, 2009(7):197-198.
[22] 刘武仁, 刘凤成, 冯艳春, 等. 玉米不同密度的生理指标研究. 玉米科学, 2004, 12(增刊):82-83,87.
[23] 段民孝. 从农大108和郑单958中得到的玉米育种启示. 玉米科学, 2005, 13(4):49-52.
[24] 冯尚宗, 王世伟, 彭美祥, 等. 不同种植密度对夏玉米产量、叶面积指数和干物质积累的影响. 江西农业学报, 2015, 27(3):1-5.
[25] 史向远, 周静, 张晓晨, 等. 不同种植密度对旱地玉米农艺性状及产量的影响. 山西农业科学, 2012, 40(5):459-461,469.
[26] 刘春晓, 董瑞, 张秀芝, 等. 不同种植密度对玉米叶面积指数、干物质积累及产量的影响. 山东农业科学, 2017, 49(2):36-39.
[27] 王昌亮, 卢瑞乾, 李建军, 等. 种植密度对玉米品种浚单509叶面积、叶绿素含量和产量的影响. 农业科技通讯, 2014(7):54-56.
[28] 王铁固, 赵新亮, 张怀胜, 等. 种植密度对玉米叶部性状及灌浆速率的影响. 贵州农业科学, 2012, 40(3):75-78.
[1] Wang Rongsheng, Mu Fengchen, Li Kun, Zhang Wei, Liu Hui, Ding Guohua, Yang Guang, Wang Nanbo, Zhang Guomin, Liu Yuming, Tao Yongqing. Comprehensive Analysis of Milling Quality and Eating Quality of Japonica Rice in Cold Region [J]. Crops, 2023, 39(2): 115-120.
[2] Yang Shiqi, Chen Liming, Zhou Yanzhi, Tan Xueming, Zeng Yongjun, Shi Qinghua, Pan Xiaohua, Zeng Yanhua. Effects of Weeds Control on the Yield and Quality of Double- Cropping Direct-Seeded High-Quality Late Indica Rice [J]. Crops, 2023, 39(2): 121-125.
[3] Liu Yu, Cao Jialin, Xiao Zhengwu, Zhang Mingyu, Chen Jia’na, Cao Fangbo, Huang Min. Effects of Nitrogen Application Rates on Yield and Nitrogen Use Efficiency of Super Hybrid Rice Y-liangyou 900 [J]. Crops, 2023, 39(2): 126-130.
[4] Ma Ruiqi, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Amount on Yield and Agronomic Traits of Different Gluten Type Wheat Cultivars [J]. Crops, 2023, 39(2): 131-137.
[5] Zhang Panpan, Li Chuan, Zhang Meiwei, Zhao Xia, Huang Lu, Liu Jingbao, Qiao Jiangfang. Effects of Nitrification Inhibitor on the Nitrogen Concentration and Yield in Summer Maize Plants and Soil under Reduced Nitrogen Application [J]. Crops, 2023, 39(2): 145-150.
[6] Xu Dong, He Jianqing, Zhang Gejie, Liu Haixin, Ma Jinyu, Wang Siyuan. Effects of Fertilizer Combined with Garden Waste Compost on Yield, Quality of Highland Barley and Soil Fertility [J]. Crops, 2023, 39(2): 214-221.
[7] Ma Jiyu, Wang Shuang, Li Yun, Guo Zhenqing, Wang Jian, Lin Xiaohu, Han Yucui. Effects of Planting Density on Agronomic Characteristics and Yield of Foxtail Millet [J]. Crops, 2023, 39(2): 222-228.
[8] Meng Yaxuan, Yao Xuhang, Zhou Baoyuan, Liu Yinghui, Yuan Jincheng, Ma Wei, Zhao Ming. Research Progress on Mixed Silage of Zea mays [J]. Crops, 2023, 39(2): 24-29.
[9] Xiao Jibing, Liu Zhi, Kong Fanxin, Xin Zongxu, Wu Hongsheng. Analysis of Agronomic Traits and Yield Stability of Sorghum Varieties Based on GGE Biplot [J]. Crops, 2023, 39(2): 36-45.
[10] Gu Yibiao, Yan Jiaqian, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Zhou Zhenling, Xu Dayong, Yang Jianchang, Gu Junfei. Different Responses of Roots of Rice Varieties to Salt Stress and the Underlying Mechanisms [J]. Crops, 2023, 39(2): 67-76.
[11] Tang Zhongjie, Xie Deyi, Xu Shouming, Nie Lihong, Lü Shuping, Wang Mingkun. Changes of Insect Resistance and Its Correlation Analysis with Yield Traits in Transgenic Bt Cotton from 2005 to 2020 [J]. Crops, 2023, 39(2): 77-82.
[12] Yuan Shuai, Su Yuting, Chen Pingping, Yi Zhenxie. Effects of Nitrogen Management on Yield Formation and Rice Quality of Double Cropping Hybrid Rice in Southern Hunan [J]. Crops, 2023, 39(2): 91-99.
[13] Xia Yuying, Wang Zhijun, Li Hongyu, Hu Chuanjun, Lü Yandong, Zhao Haicheng, Zheng Guiping. Effects of Seedling Raising Methods on Seedling Quality, Yield and Quality of Rice in Cold Region [J]. Crops, 2023, 39(1): 103-108.
[14] Gao Wei, Hao Qingting, Zhang Zeyan, Wang Qian, Yan Hubin, Zhu Huijun, Zhao Xueying, Zhang Yaowen. Effects of Nitrogen and Phosphorus Application on Yield, Root Morphology and Photosynthetic Characteristics of Adzuki Bean [J]. Crops, 2023, 39(1): 109-114.
[15] Wang Yujiao, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Shi Shubing, Zhao Guangcai. Effects of Sowing Methods on Yield and Quality of Different Varieties of Wheat [J]. Crops, 2023, 39(1): 122-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!