Crops ›› 2023, Vol. 39 ›› Issue (2): 214-221.doi: 10.16035/j.issn.1001-7283.2023.02.031

Previous Articles     Next Articles

Effects of Fertilizer Combined with Garden Waste Compost on Yield, Quality of Highland Barley and Soil Fertility

Xu Dong(), He Jianqing(), Zhang Gejie, Liu Haixin, Ma Jinyu, Wang Siyuan   

  1. College of Plant Science, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, Tibet, China
  • Received:2023-02-17 Revised:2023-02-23 Online:2023-04-15 Published:2023-04-11

Abstract:

Studying the effects of fertilizer combined with garden waste compost on the yield, quality and soil fertility of highland barley provided technical support for the high quality and efficient production of highland barley, five treatments were set up in the experiment, namely conventional fertilization (225kg/ha urea+150kg/ha superphosphate, CK), conventional fertilizer+9000kg/ha garden waste compost (D1), conventional fertilizer+12 000kg/ha garden waste compost (D2), conventional fertilizer+15 000kg/ha garden waste compost (D3) and conventional fertilizer+18 000kg/ha Garden waste compost (D4). The highland barley plant height, yield, quality and rhizosphere soil fertility index were measured. The results indicated that, adding garden waste compost could effectively promote the growth of highland barley. With the increase of the application amount of garden waste compost, the yield of highland barley increased, with the highest (5821.84kg/ha) under D1 treatment and the lowest (4724.21kg/ha) under D4 treatment. The contents of crude fat, starch and soluble sugar of highland barley also increased, but had a negative effect on crude protein. Fertilizer combined with garden waste compost could effectively reduce soil pH and EC values, increase organic matter and water content, increase soil nitrogen, phosphorus, potassium and other nutrients contents, increase the number of soil microorganisms, enhance soil enzyme activity, but had a certain negative effect on catalase. In conclusion, compared with conventional fertilization, the other four garden waste compost treatments could promote the yield and quality of highland barley. According to the principal component analysis, conventional fertilization+12 000kg/ha garden waste compost (D2) had the best effect on the yield and quality of highland barley.

Key words: Garden waste compost, Highland barley, Yield, Quality, Soil fertility

Table 1

Field test design scheme kg/hm2"

处理
Treatment
尿素
Urea
过磷酸钙
Calcium
superphosphate
园林废弃物堆肥
Garden waste
compost
CK 225 150 0
D1 225 150 9000
D2 225 150 12 000
D3 225 150 15 000
D4 225 150 18 000

Fig.1

Effects of different treatments on highland barley plant height in different periods Different lowercase letters indicate significant differences between different fertilization treatments (P < 0.05)"

Table 2

Effects of different application rates of garden waste compost on highland barley yield"

处理Treatment 行穗数Ear number per row 穗粒数Grain number per spike 千粒重1000-grain weight (g) 理论产量Theoretical yield (kg/hm2)
CK 75.83±2.50c 41.41±0.28c 52.68±0.90b 4218.78±182.76c
D1 90.00±3.67a 46.50±0.00a 54.53±0.53ab 5821.84±294.34a
D2 79.00±4.33bc 49.46±0.00a 57.42±2.25a 5733.20±537.41ab
D3 84.67±10.00ab 45.57±0.69ab 55.08±1.45a 5423.51±701.22b
D4 80.84±9.84b 42.14±2.27bc 54.76±0.03ab 4724.21±320.23bc

Table 3

Effects of different fertilizer application rates of garden waste compost on highland barley quality %"

处理
Treatment
粗脂肪
Crude fat
粗蛋白
Crude protein
淀粉
Starch
可溶性糖
Soluble sugar
CK 1.85±0.05c 13.33±0.79a 51.39±0.56b 16.99±0.45bc
D1 2.34±0.10a 12.41±0.44b 54.30±0.80a 21.35±0.57a
D2 2.35±0.05a 12.88±0.08b 54.17±0.11a 18.07±0.15b
D3 2.24±0.04ab 12.94±1.41b 51.98±0.24b 16.46±0.41c
D4 2.04±0.08bc 12.55±0.51b 51.78±0.01b 13.65±0.24d

Table 4

Effects of fertilizer combined with garden waste compost on soil property in field"

处理
Treatment
含水量
Water
content (%)
pH EC值
EC value
(μS/cm)
有机质
Organic
matter (%)
CK 16.46±2.99b 7.87±0.22a 132.65±11.15a 1.81±0.02d
D1 20.85±2.30a 7.37±0.10b 117.00±4.60ab 2.37±0.11b
D2 19.73±0.72a 7.31±0.10b 114.90±0.80b 3.01±0.11a
D3 17.13±2.20b 7.32±0.10b 125.65±11.85ab 2.17±0.13bc
D4 18.58±1.39ab 7.33±0.13b 129.70±5.50ab 2.06±0.11c

Table 5

Effects of fertilizer combined with garden waste compost on soil nutrients in field"

处理
Treatment
全氮
Total nitrogen
(g/kg)
全磷
Total phosphorus
(g/kg)
全钾
Total potassium
(g/kg)
速效氮
Available
nitrogen (mg/kg)
速效磷
Available
phosphorus (mg/kg)
速效钾
Available
potassium (mg/kg)
CK 2.28±0.02bc 3.42±0.01b 12.49±0.14b 369.40±15.61b 10.76±1.98c 136.63±13.53c
D1 2.38±0.01b 4.07±0.01a 12.93±0.04ab 374.67±67.71ab 18.20±1.81ab 145.33±19.67c
D2 2.44±0.04ab 3.94±0.01bc 13.50±0.07a 405.32±37.61a 23.16±0.80a 246.26±26.29a
D3 2.64±0.01a 3.81±0.01c 13.57±0.07a 391.40±69.82a 15.36±1.76bc 180.90±11.99b
D4 2.37±0.01b 3.61±0.01b 13.45±0.09a 390.42±9.57a 15.08±5.58bc 162.01±4.33bc

Table 6

Effects of fertilizer combined with garden waste compost on soil enzyme activities"

处理
Treatment
过氧化氢酶
Catalase
[mg/(g?d)]
蔗糖酶
Sucrase
[mg/(g?d)]
纤维素酶
Alkaline
phosphatase
[mg/(g?72h)]
脲酶
Urease
[mg/(g?d)]
CK 0.68±0.02a 4.74±0.81b 0.03±0.01d 1.46±0.12d
D1 0.63±0.02ab 6.11±0.57ab 0.13±0.02c 1.81±0.13b
D2 0.64±0.02ab 6.97±1.40a 0.42±0.09a 2.34±0.55a
D3 0.59±0.04b 7.44±0.05a 0.26±0.01b 1.61±0.69bc
D4 0.63±0.05ab 6.93±0.66a 0.11±0.03cd 1.90±0.21b

Table 7

Effects of fertilizer combined with garden waste compost on soil biological characteristics"

处理
Treatment
数量Quantity 比例Ratio
细菌Bacteria (×106cfu/g) 放线菌Actinomycetes (×105cfu/g) 真菌Fungus (×103cfu/g) 细菌/真菌B/F 放线菌/真菌A/F
CK 5.95±0.91b 4.21±0.93b 6.14±5.09b 0.97 0.69
D1 7.61±3.33a 6.34±2.23a 12.94±3.75a 0.59 0.49
D2 7.02±1.66a 5.45±0.86ab 9.39±2.78ab 0.75 0.58
D3 7.30±1.12a 4.70±0.51ab 9.08±3.01ab 0.80 0.52
D4 6.14±3.72b 4.24±0.78b 11.49±4.18ab 0.53 0.37

Table 8

Correlation between yield and quality of highland barley and soil physicochemical properties"

指标
Index
理论产量
Theoretical
yield
过氧化
氢酶
Catalase
蔗糖

Sucrase
纤维素酶
Alkaline
phosphatase
脲酶
Urease
细菌
Bacteria
真菌
Fungus
放线菌
Actinomycetes
粗脂肪
Crude fat
粗蛋白
Crude
protein
淀粉
Starch
可溶性糖
Soluble
sugar
pH -0.76 0.81 -0.93* -0.64 -0.63 -0.62 -0.74 -0.43 -0.80 0.73 -0.50 -0.01
EC -0.93* 0.28 -0.39 -0.71 -0.73 -0.79 -0.52 -0.89* -0.93* 0.48 -0.98** -0.69
有机质Organic matter 0.79 -0.20 0.49 0.89* 0.91* 0.55 0.30 0.62 0.81 -0.29 0.83 0.39
全氮TN 0.53 -0.91* 0.80 0.59 0.06 0.60 0.10 0.08 0.55 -0.07 0.05 -0.07
全磷TP 0.99** -0.52 0.50 0.59 0.55 0.93* 0.69 0.92* 0.97** -0.65 0.90* 0.69
全钾TK 0.51 -0.79 0.99** 0.72 0.57 0.35 0.37 0.02 0.57 -0.38 0.17 -0.36
速效氮AN 0.47 -0.47 0.81 0.89* 0.80 0.21 0.14 0.03 0.54 -0.16 0.30 -0.29
速效磷AP 0.84 -0.30 0.56 0.85 0.92* 0.61 0.47 0.68 0.87 -0.45 0.87 0.39
速效钾AK 0.54 -0.25 0.60 0.97** 0.83 0.28 -0.02 0.19 0.59 0.02 0.47 -0.02

Table 9

Principal component analysis of each index"

主成分
Principal
component
特征值
Eigenvalue
方差贡献率
Variance
contribution ratio (%)
累计方差贡献率
Cumulative variance
contribution ratio (%)
1 5.44 67.98 67.98
2 1.35 16.82 84.80

Table 10

Score coefficient matrix"

评价指标
Evaluation index
主成分1 PCA 1 主成分2 PCA 2
载荷
Load
系数
Coefficient
载荷
Load
系数
Coefficient
穗粒数Grain number per spike 0.90 0.39 0.40 0.25
千粒重1000-grain weight 0.71 0.31 0.63 0.39
行穗数Number of single panicle 0.69 0.30 -0.67 -0.41
理论产量Theoretical yield 0.99 0.42 0.03 0.02
粗脂肪Crude fat 0.98 0.42 0.09 0.05
粗蛋白Crude protein -0.63 -0.27 0.49 0.31
淀粉Starch 0.93 0.40 0.04 0.03
可溶性糖Soluble sugar 0.67 0.29 -0.30 -0.19

Table 11

Comprehensive score of each treatment"

处理
Treatment
主成分1
PCA 1
主成分2
PCA 2
综合得分
Comprehensive score
排名
Ranking
CK -3.17 0.01 -2.15 5
D1 2.46 -1.10 1.49 2
D2 1.97 1.24 1.55 1
D3 0.15 0.06 0.11 3
D4 -1.40 -0.20 -0.99 4
[1] 邢玉晓. 不同品种青稞的抗氧化活性及抗氧化作用的研究. 重庆:西南大学, 2017.
[2] 西藏自治区统计局,国家统计局西藏调查总队. 2021年西藏自治区国民经济和社会发展统计公报. 西藏日报(汉). 2022-04-25(5).
[3] 李燕青, 赵秉强, 李壮. 有机无机结合施肥制度研究进展. 农学学报, 2017, 7(7):22-30.
doi: 10.11923/j.issn.2095-4050.cjas17020011
[4] 范小杉, 高吉喜. 中国食品生产消费过程中农用化学品足迹分析. 现代化工, 2008(5):79-84.
[5] 陈奕山. 农时视角下乡村劳动力的劳动时间配置:农业生产和非农就业的关系分析. 中国人口科学, 2019 (2):75- 86,127-128.
[6] 曹晓倩, 孙涛, 帕尔哈提, 等. 不同处理条件对叶菜类蔬菜亚硝酸盐含量的影响. 中国食物与营养, 2018, 24(2):33-36.
[7] 侯裕生, 王振华, 李文昊, 等. 极端干旱区滴灌葡萄水肥适宜用量主成分分析法. 排灌机械工程学报, 2021, 39(1):89-95.
[8] 方海兰, 吕子文, 杨意, 等. 绿化植物废弃物处置技术规范. 园林, 2012(2):38-41.
[9] 胡亚利, 孙向阳, 龚小强, 等. 混合改良剂改善园林废弃物堆肥基质品质提高育苗效果. 农业工程学报, 2014, 30(18):198-204.
[10] Li Y S, Sun B, Deng T Y, et al. Safety and efficiency of sewage sludge and garden waste compost as a soil amendment based on the field application in woodland. Ecotoxicology and Environmental Safety, 2021, 222:112497.
doi: 10.1016/j.ecoenv.2021.112497
[11] 刘毓, 孙芳芳, 韩冰. 堆肥对三角枫苗期生长发育及土壤质量的影响. 北方园艺, 2015(13):94-97.
[12] Cattle S R., Robinson C, Whatmuff M. The character and distribution of physical contaminants found in soil previously treated with mixed waste organic outputs and garden waste compost. Waste Management, 2020, 101:94-105.
doi: S0956-053X(19)30622-1 pmid: 31606613
[13] 周文志, 李素艳, 孙向阳, 等. 不同改良材料对滨海盐碱土盐分淋溶特征的影响. 浙江农业学报, 2022, 34(7):1485-1492.
doi: 10.3969/j.issn.1004-1524.2022.07.16
[14] Weldon S, Rivier P A, Joner E J, et al. Co-composting of digestate and garden waste with biochar:effect on greenhouse gas production and fertilizer value of the matured compost. Environmental Technology, 2022:21-22.
[15] 李轲, 杨柳. 起爆剂和复合微生物菌剂对园林废弃物堆肥效果的影响. 东北农业科学, 2022, 47(2):59-63.
[16] 关松荫. 土壤酶活性影响因子的研究——Ⅰ.有机肥料对土壤中酶活性及氮磷转化的影响. 土壤学报, 1989(1):72-78.
[17] 袁玲, 杨邦俊, 郑兰君, 等. 长期施肥对土壤酶活性和氮磷养分的影响. 植物营养与肥料学报, 1997, 3(4):300-306.
[18] 马冬云, 郭天财, 宋晓, 等. 尿素施用量对小麦根际土壤微生物数量及土壤酶活性的影响. 生态学报, 2007, 27(12):5222- 5228.
[19] 胡嘉伟, 刘勇, 马履一, 等. 园林废弃物堆肥替代油松容器苗基质材料的研究. 南京林业大学学报(自然科学版), 2015, 39(5):81-86.
[20] 庾富文, 周俊辉, 袁丽珍, 等. 园林废弃物堆腐产品在花卉基质栽培中的应用研究. 广东农业科学, 2019, 46(9):47-55.
[21] 殷庆霏, 郭建斌, 倪肖卫, 等. 不同堆肥对南方屋顶绿化植物生长特性的影响. 环境工程学报, 2017, 11(11):6205-6213.
[22] 刘林峰. 园林废弃物木质纤维素高效降解菌的筛选及其发酵条件的优化. 林芝:西藏农牧学院, 2021.
[23] 赵伟进, 王孝先, 杨洋, 等. 黑青稞根际促生菌筛选及其对种子萌发的影响. 种子, 2018, 37(12):1-5,10.
[24] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[25] 刘光崧. 土壤理化分析与剖面描述. 北京: 中国标准出版社,1996.
[26] 关松荫. 土壤酶及其研究法. 北京: 农业出版社,1986.
[27] 中国科学院南京土壤研究所微生物室编著. 土壤微生物研究法. 北京: 科学出版社,1985.
[28] 刘兴斌, 马宗海, 闫治斌, 等. 不同秸秆发酵还田对制种玉米田土壤肥力质量和玉米品质的影响. 干旱地区农业研究, 2022, 40(5):230-241.
[29] 娄义, 郭俏, 彭楚, 等. 3株芽孢杆菌对番茄的促生作用及对番茄根域微生物的影响. 应用生态学报, 2018, 29(1):260-268.
doi: 10.13287/j.1001-9332.201801.040
[30] 孙敬祖, 薛泉宏, 唐明, 等. 放线菌制剂对连作草莓根区微生物区系的影响及其防病促生作用. 西北农林科技大学学报(自然科学版), 2009, 37(12):153-158.
[31] 陈爱平, 周逢芳. 酒精处理对草莓连作土壤微生物群落的影响. 现代农业科技, 2017,(18):54-55,59.
[32] 曹静, 朱传军, 周岚, 等. 牛粪和绿化废弃物堆肥替代泥炭作为栽培基质对刺槐生长的影响. 河南农业科学, 2017, 46(2):100-104.
[33] 张丹. 化肥减量配施生物有机肥和灌溉量对大蒜产量和品质的影响. 河南农业科学, 2022, 51(3):139-145.
[34] 高飞, 汪志鹏, 赵贺, 等. 低地力条件下有机肥部分替代化肥对作物产量和土壤性状的影响. 江苏农业学报, 2020, 36(1):83-91.
[35] 杨勇, 李晗, 旦增, 等. 增施商品有机肥对青稞养分吸收和产量的影响. 西藏农业科技, 2020, 42(4):52-56.
[36] 舒晓晓, 王璐瑶, 王欢元. 施肥与耕作措施对土壤养分和小麦产量的影响. 西部大开发(土地开发工程研究), 2019, 4(11):38-43.
[37] 田艳洪, 赵晓锋, 刘玉娥, 等. 不同有机肥用量对大豆植株生长及产量的影响. 大豆科学, 2018, 37(4):578-584.
[38] 万辰, 马瑛骏, 张克强, 等. 洱海流域不同有机肥替代对土壤理化性质及油菜产量的影响. 农业环境科学学报, 2021, 40(11):2494-2502.
[39] 古巧珍, 杨学云, 孙本华, 等. 长期定位施肥对小麦籽粒产量及品质的影响. 麦类作物学报, 2004, 24(3):76-79.
[40] 贺明龙. 简述施肥对小麦籽粒营养品质的影响. 麦类作物学报, 1986(1):45-47.
[41] 梁元振. 有机无机肥配施对土壤微生物学特征及肥力的影响. 哈尔滨:东北农业大学, 2017.
[42] 李文, 魏廷虎, 阿保地, 等. 化肥减施配合有机肥对高寒区燕麦营养品质和土壤养分的影响. 草地学报, 2021, 29(12):2878-2886.
doi: 10.11733/j.issn.1007-0435.2021.12.030
[43] 王宁, 南宏宇, 冯克云. 化肥减量配施有机肥对棉田土壤微生物生物量、酶活性和棉花产量的影响. 应用生态学报, 2020, 31(1):173-181.
doi: 10.13287/j.1001-9332.202001.022
[44] 郭军成, 王明国, 周洋, 等. 持续秸秆还田对土壤理化性状及玉米产量的影响. 农业科学研究, 2020, 41(1):1-6.
[45] 崔诚, 冼卓慧, 郑富海, 等. 不同改良材料对典型城市绿地土壤物理性质的影响研究. 江西农业学报, 2022, 34(7):97-108.
[46] 周文志, 孙向阳, 李素艳, 等. 生物炭和园林废弃物堆肥对滨海盐碱土淋溶的影响. 中国水土保持科学, 2019, 17(3):23-30.
[47] 冯小杰, 刘国梁, 张伟, 等. 园林绿化废弃物堆肥对土壤有机碳组分影响. 北京林业大学学报, 2021, 43(7):120-127.
[48] 陈浩天, 张地方, 张宝莉, 等. 园林废弃物不同处理方式的环境影响及其产物还田效应. 农业工程学报, 2018, 34(21):239-244.
[49] 李婧男, 孙向阳, 张贺, 等. 暗管排盐条件下园林废弃物与膨润土对滨海盐土的改良效果研究. 应用基础与工程科学学报, 2021, 29(3):562-574.
[50] 李娟, 王文丽, 赵旭. 生物肥料HZ-24对黄芪生长及土壤微生物数量和酶活性的影响. 土壤与作物, 2022, 11(2):200-208.
[51] 刘馨, 许帆, 祁娟霞, 等. 柠条堆肥和改良剂对黄瓜连作土壤理化性质、酶活性和微生物数量的影响. 河南农业科学, 2017, 46(7):49-56.
[52] 孙瑞莲, 赵秉强, 朱鲁生, 等. 长期定位施肥田土壤酶活性的动态变化特征. 生态环境, 2008, 17(5):2059-2063.
[1] Wang Rongsheng, Mu Fengchen, Li Kun, Zhang Wei, Liu Hui, Ding Guohua, Yang Guang, Wang Nanbo, Zhang Guomin, Liu Yuming, Tao Yongqing. Comprehensive Analysis of Milling Quality and Eating Quality of Japonica Rice in Cold Region [J]. Crops, 2023, 39(2): 115-120.
[2] Yang Shiqi, Chen Liming, Zhou Yanzhi, Tan Xueming, Zeng Yongjun, Shi Qinghua, Pan Xiaohua, Zeng Yanhua. Effects of Weeds Control on the Yield and Quality of Double- Cropping Direct-Seeded High-Quality Late Indica Rice [J]. Crops, 2023, 39(2): 121-125.
[3] Liu Yu, Cao Jialin, Xiao Zhengwu, Zhang Mingyu, Chen Jia’na, Cao Fangbo, Huang Min. Effects of Nitrogen Application Rates on Yield and Nitrogen Use Efficiency of Super Hybrid Rice Y-liangyou 900 [J]. Crops, 2023, 39(2): 126-130.
[4] Ma Ruiqi, Wang Demei, Tao Zhiqiang, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Amount on Yield and Agronomic Traits of Different Gluten Type Wheat Cultivars [J]. Crops, 2023, 39(2): 131-137.
[5] Han Yuhuan, Liu Chen, Yang Long, Yu Tao. Effects of Topping Period and Number of Remained Leaves on Growth and Development of Upper Leaves of Flue-Cured Tobacco in Shandong Province [J]. Crops, 2023, 39(2): 157-162.
[6] Wang Yuehua, Zhou Junxue, Ma Yilin, Ma Junhong, Wang Yanfang, Zhao Shimin, Shen Hongtao, Li Youjun, Liu Ling. Effects of Different Harvest Maturity of Upper Six Leaves on Physiological Metabolism and Quality of Flue-Cured Tobacco Line LY1306 [J]. Crops, 2023, 39(2): 171-177.
[7] Cui Shuna, Wang Ye, Lu Yuqing, Pan Jinbao, Zhang Qiuzhi. Correlation and Path Analysis of Three Ear Leaves on Yield in Maize [J]. Crops, 2023, 39(2): 201-206.
[8] Rong Shibin, Qin Yanqing, Zhao Yuanyuan, Li Jingjing, Wang Jun, Zhou Jun, Liu Deshui, Zhang Ruina, Zeng Yang, Tan Shu, Yan Jie, Shi Hongzhi. Effects of Different Curing Methods on Chemical Components and Aroma Quality of Sichuan Cigar Wrapper and Local Filler [J]. Crops, 2023, 39(2): 207-213.
[9] Ma Jiyu, Wang Shuang, Li Yun, Guo Zhenqing, Wang Jian, Lin Xiaohu, Han Yucui. Effects of Planting Density on Agronomic Characteristics and Yield of Foxtail Millet [J]. Crops, 2023, 39(2): 222-228.
[10] Meng Yaxuan, Yao Xuhang, Zhou Baoyuan, Liu Yinghui, Yuan Jincheng, Ma Wei, Zhao Ming. Research Progress on Mixed Silage of Zea mays [J]. Crops, 2023, 39(2): 24-29.
[11] Xiao Jibing, Liu Zhi, Kong Fanxin, Xin Zongxu, Wu Hongsheng. Analysis of Agronomic Traits and Yield Stability of Sorghum Varieties Based on GGE Biplot [J]. Crops, 2023, 39(2): 36-45.
[12] Gu Yibiao, Yan Jiaqian, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Zhou Zhenling, Xu Dayong, Yang Jianchang, Gu Junfei. Different Responses of Roots of Rice Varieties to Salt Stress and the Underlying Mechanisms [J]. Crops, 2023, 39(2): 67-76.
[13] Tang Zhongjie, Xie Deyi, Xu Shouming, Nie Lihong, Lü Shuping, Wang Mingkun. Changes of Insect Resistance and Its Correlation Analysis with Yield Traits in Transgenic Bt Cotton from 2005 to 2020 [J]. Crops, 2023, 39(2): 77-82.
[14] Yuan Shuai, Su Yuting, Chen Pingping, Yi Zhenxie. Effects of Nitrogen Management on Yield Formation and Rice Quality of Double Cropping Hybrid Rice in Southern Hunan [J]. Crops, 2023, 39(2): 91-99.
[15] Xia Yuying, Wang Zhijun, Li Hongyu, Hu Chuanjun, Lü Yandong, Zhao Haicheng, Zheng Guiping. Effects of Seedling Raising Methods on Seedling Quality, Yield and Quality of Rice in Cold Region [J]. Crops, 2023, 39(1): 103-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!