Crops ›› 2023, Vol. 39 ›› Issue (3): 101-108.doi: 10.16035/j.issn.1001-7283.2023.03.014

Previous Articles     Next Articles

Response of Yield and Cd Accumulation and Distribution in Main Crop and Ratooning Rice of Xiangzaoxian 45 to Irrigation Methods

Yuan Shuai(), Chen Jiwang(), Chen Pingping, Yi Zhenxie()   

  1. College of Agronomy, Hunan Agricultural University/Key Laboratory of Crop Physiology and Molecular Biology, Ministry of Education, Changsha 410128, Hunan, China
  • Received:2022-02-21 Revised:2022-04-01 Online:2023-06-15 Published:2023-06-16

Abstract:

To provide a scientific basis for the safe production of ratooning rice, taking Xiangzaoxian 45, the main early rice variety in Hunan province, as the material, the yield, soil available Cd content, Cd content and accumulation in various organs, Cd transfer coefficient and enrichment coefficient of rice in main crop and ratooning season under two irrigation methods (flooded irrigation and intermittent irrigation) were compared. The results showed that, intermittent irrigation significantly increased the biomass and yield of rice, and the yield of main crop in intermittent irrigation treatment was 13.86% higher than that of flooded irrigation treatment, and the yield of ratooning rice was also slightly higher in intermittent irrigation treatment. Compared with intermittent irrigation, flooded irrigation significantly decreased the Cd content and accumulation of rice, in which Cd content in brown rice decreased by 37.93% and 43.90%, respectively, and the total Cd accumulation in plants decreased by 52.41% and 53.40% in main crop and ratooning season, respectively. Effects of irrigation methods on Cd transfer coefficient in the main crop was inconsistent with that in ratooning rice. The Cd transfer coefficient in flooded irrigation treatment was significantly higher than in intermittent irrigation treatment in main crop, but ratooning rice was the opposite. Flooding irrigation significantly reduced the content of soil available Cd and Cd enrichment coefficient of rice. Compared with flooded irrigation treatment, intermittent irrigation reduced the contents of soil available Cd contents by 10.81% and 16.92% at maturity stage of main crop and ratooning rice, respectively. It could be seen that flooding irrigation reduced rice yield, Cd content in brown rice, available Cd content in soil and Cd enrichment coefficient, but there was a certain difference between main crop and ratooning rice. The decline of rice yield was larger in main crop, and that of Cd content and accumulation in brown rice and soil available Cd content were larger in ratooning season.

Key words: Ratooning rice, Irrigation method, Yield, Cd accumulation and distribution

Table 1

Yield and its components of main crop and ratooning season under different irrigation methods"

季别
Season
处理
Treatment
有效穗数
Effective panicle number
(×106/hm2)
穗总粒数
Total grain
per panicle
穗实粒数
Filled grain
per panicle
结实率
Seed-setting
rate (%)
千粒重
1000-grain
weight (g)
理论产量
Theoretical
yield (t/hm2)
实际产量
Actual yield
(t/hm2)
头季
Main crop
G1 3.75b 81.89a 68.39a 83.51a 25.54a 6.56b 6.42b
G2 3.89a 83.75a 70.99a 84.76a 26.57a 7.33a 7.31a
再生季
Ratooning rice
G1 6.21a 62.96a 32.96a 52.35a 22.18a 4.54a 4.46a
G2 6.08a 65.34a 33.67a 51.53a 22.45a 4.60a 4.51a

Table 2

Dry matter accumulation in main crop and ratooning seasons under different irrigation methods t/hm2"

器官
Organ
处理
Treatment
头季Main crop 再生季Ratooning rice
分蘖盛期
Peak tillering
孕穗期
Booting
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
茎Stem G1 0.81b 4.86b 4.36b 4.48b 3.77b 2.76b 2.62b 4.22b
G2 1.24a 5.95a 5.25a 5.44a 4.31a 3.05a 2.78a 4.53a
叶Leaf G1 0.66b 1.52b 1.34b 1.41b 1.43b 1.43a 0.76a 1.00b
G2 0.78a 2.07a 2.11a 1.72a 1.55a 1.12b 0.78a 1.25a
穗Panicle G1 - - 2.04b 5.68a 7.05b 0.75b 2.04b 5.54b
G2 - - 2.27a 4.01b 7.82a 1.04a 2.97a 5.66a
稻桩Stubble G1 - - - - - 1.76b 1.29b 0.91b
G2 - - - - - 1.81a 1.40a 1.08a

Table 3

Content of soil available Cd in main crop and ratooning season under different irrigation methods mg/kg"

季别Season 处理Treatment 分蘖盛期Peak tillering 孕穗期Booting 齐穗期Full heading 灌浆中期Mid-filling 成熟期Maturity
头季Main crop G1 0.46b 0.45b 0.34b 0.56b 0.66b
G2 0.56a 0.57a 0.38a 0.72a 0.74a
再生季Ratooning rice G1 ? ? 0.43b 0.49b 0.54b
G2 ? ? 0.54a 0.57a 0.65a

Table 4

Cd accumulation of organs at different growth stages of main crop and ratooning seasons under different irrigation methods mg/hm2"

季别
Season
生育阶段
Growth stage
处理
Treatment
总积累量
Total accumulation

Stem

Leaf

Panicle
稻桩
Stubble
头季Main crop 移栽―齐穗 G1 5108.53b 4662.29b 232.16b 214.09b -
G2 7204.05a 6512.58a 428.66a 262.81a -
齐穗―灌浆中期 G1 868.08a 679.49a -15.54a 204.13a -
G2 374.45b 478.33b -122.31b 18.43b -
灌浆中期―成熟 G1 7550.43b 7171.01b -66.23b 445.65b -
G2 20 847.53a 18 858.10a 3.22a 1986.21a -
再生季Ratooning rice 头季收割―齐穗 G1 465.69b 2283.13b 280.36b 155.76b -2253.55b
G2 9891.64a 5798.50a 528.42a 413.49a 3151.23a
齐穗―灌浆中期 G1 7771.17a 1306.99a 23.74a 431.58b 6008.86a
G2 898.60b -449.22b -97.54b 950.60a 494.77b
灌浆中期―成熟 G1 4194.79b 6752.98b 150.79b 1680.59b -4389.57b
G2 15 846.50a 13 310.77a 423.83a 2573.71a -461.82a

Table 5

Cd enrichment coefficients of organs in main crop and ratooning season under different irrigation methods"

器官
Organ
处理
Treatment
头季Main crop 再生季Ratooning rice
分蘖盛期
Peak tillering
孕穗期
Booting
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
茎Stem G1 0.70a 1.41a 3.15b 2.14a 5.00b 1.90b 2.81b 4.58b
G2 0.39b 1.03b 3.26a 1.83b 8.28a 3.52a 3.39a 6.29a
叶Leaf G1 0.28a 0.37b 0.51a 0.28b 0.13b 0.45b 0.82b 0.85b
G2 0.23b 0.51a 0.53a 0.24a 0.21a 0.88a 0.98a 1.04a
穗Panicle G1 - - 0.30a 0.13b 0.53b 0.48b 0.59b 0.77b
G2 - - 0.31a 0.16a 0.72a 0.74a 0.81a 1.06a
稻桩Stubble G1 - - - - 3.87b 2.97b 8.61b 7.95b
G2 - - - - 4.62a 10.45a 13.49a 14.43a

Table 6

Cd enrichment coefficients of parts of panicle at maturity stage of main crop and rationing season under different irrigation methods"

季别
Season
处理
Treatment
空粒
Empty grain
枝梗
Branch
糙米
Brown rice
颖壳
Glume
头季
Main crop
G1 0.36b 0.65b 0.27b 0.25b
G2 1.85a 4.40a 0.38a 0.35a
再生季
Ratooning rice
G1 0.05b 0.12b 0.03b 0.03b
G2 0.08a 0.17a 0.03a 0.04a

Table 7

Cd content of each organ in main crop and ratooning season under different irrigation methods mg/kg"

器官
Organ
处理
Treatment
头季Main crop 再生季Ratooning rice
分蘖盛期
Peak tillering
孕穗期
Booting
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
根Root G1 4.78a 7.07a 5.23b 3.97b 19.01b 4.44b 15.89b 10.64b
G2 2.87b 6.63b 7.54a 5.70a 59.51a 19.53a 27.11a 12.83a
茎Stem G1 0.32a 0.64a 1.07b 1.19b 3.32b 0.83b 1.37b 2.44b
G2 0.22b 0.58b 1.24a 1.36a 5.99a 1.90a 1.92a 4.12a
叶Leaf G1 0.13a 0.17b 0.17b 0.15b 0.09b 0.20b 0.40b 0.46b
G2 0.13a 0.29a 0.20a 0.18a 0.15a 0.47a 0.56a 0.68a
穗Panicle G1 - - 0.11b 0.07b 0.22b 0.21b 0.29b 0.43b
G2 - - 0.12a 0.11a 0.52a 0.40a 0.46a 0.70a
稻桩Stubble G1 - - - - 2.57b 1.29b 4.90b 4.26b
G2 - - - - 3.34a 5.64a 7.65a 9.45a

Table 8

Cd content in each panicle at maturity under different irrigation methods mg/kg"

处理
Treatment
头季Main crop 再生季Ratooning rice
空粒
Empty grain
枝梗
Branch
糙米
Brown rice
颖壳
Glume
空粒
Empty grain
枝梗
Branch
糙米
Brown rice
颖壳
Glume
G1 0.24b 0.43b 0.27b 0.18b 0.52b 1.22b 0.32b 0.23b
G2 1.34a 3.18a 0.33a 0.29a 1.02a 2.16a 0.45a 0.41a

Table 9

Cd transfer coefficients of organs in main crop and ratooning seasons under different irrigation methods"

器官
Organ
处理
Treatment
头季Main crop 再生季Ratooning rice
分蘖盛期
Peak tillering
孕穗期
Booting
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
齐穗期
Full heading
灌浆中期
Mid-filling
成熟期
Maturity
茎Stem G1 0.068b 0.088a 0.204a 0.301a 0.175a 0.186a 0.086a 0.230b
G2 0.075a 0.090a 0.165b 0.238b 0.101b 0.097b 0.071b 0.321a
叶Leaf G1 0.027b 0.024b 0.033a 0.039a 0.005a 0.044a 0.025a 0.043b
G2 0.045a 0.044a 0.027b 0.031b 0.003a 0.024b 0.020b 0.053a
穗Panicle G1 - - 0.020a 0.019b 0.011a 0.047a 0.018a 0.039b
G2 - - 0.015b 0.021a 0.009a 0.020b 0.017a 0.054a
稻桩Stubble G1 - - - - 0.135a 0.290a 0.264b 0.400b
G2 - - - - 0.056b 0.289a 0.282a 0.736a

Table 10

Cd transfer coefficients of parts of panicle at maturity stage of main crop and rationing season under different irrigation methods"

季别
Season
处理
Treatment
空粒
Empty grain
枝梗
Branch
糙米
Brown rice
颖壳
Glume
头季
Main crop
G1 0.013b 0.023b 0.010a 0.009a
G2 0.023a 0.053a 0.005b 0.004b
再生季
Ratooning rice
G1 0.049b 0.115b 0.026b 0.030b
G2 0.079a 0.168a 0.032a 0.035a
[1] 旷娜, 莫文伟, 唐启源, 等. 再生稻与晚稻产量形成对比分析. 杂交水稻, 2021, 36(6):48-53.
[2] Chaney R L, Reeves P G, Ryan J A, et al. An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. Biometals, 2004, 17(5):549-553.
pmid: 15688862
[3] Clemens S, Aarts M G M, Thomine S, et al. Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 2013, 18(2):92-99.
doi: 10.1016/j.tplants.2012.08.003 pmid: 22981394
[4] Kobayashi E, Suwazono Y, Dochi M, et al. Influence of consumption of cadmium-polluted rice or Jinzu River water on occurrence of renal tubular dysfunction and/or itai-itai disease. Biological Trace Element Research, 2009, 127(3):257-268.
doi: 10.1007/s12011-008-8239-z pmid: 18979074
[5] 史锟, 张福锁, 刘学军, 等. 不同栽培方式对籼、粳稻根表铁膜和根铁、镉含量的影响. 应用生态学报, 2003, 14(8): 1273-1277.
[6] 杨定清, 雷绍荣, 李霞, 等. 大田水分管理对控制稻米镉含量的技术研究. 中国农学通报, 2016, 32(18):11-16.
doi: 10.11924/j.issn.1000-6850.casb16030053
[7] Huang J H, Wang S L, Lin J H, et al. Dynamics of cadmium concentration in contaminated rice paddy soils with submerging time. Paddy and Water Environment, 2013, 11(1/2/3/4):483-491.
doi: 10.1007/s10333-012-0339-x
[8] 丁紫娟, 徐洲, 田应兵, 等. 再生稻干湿交替灌溉与根区分层施氮减少温室气体排放. 灌溉排水学报, 2021, 40(7):51-58.
[9] 郑华斌, 陈其敏, 陈元伟, 等. 节水减氮对再生稻和双季稻周年产量及氮肥利用效率的影响. 生态学杂志, 2019, 38(7):2023-2029.
[10] 易镇邪, 屠乃美, 陈平平. 杂交稻新组合再生稻头季及再生季源库特征分析. 中国水稻科学, 2005, 19(3):243-248.
[11] 易镇邪, 周文新, 屠乃美. 留桩高度对再生稻源库性状与物质运转的影响. 中国水稻科学, 2009, 23(5):509-516.
doi: 10.3969/j.issn.10017216.2009.05.10
[12] 郑智华. 隆两优华占的特征特性及再生稻高产栽培技术. 现代农业科技, 2016(2):44,53.
[13] 陈基旺, 陈平平, 王晓玉, 等. 不同节位再生稻镉积累分配及其与头季稻的差异. 南方农业学报, 2020, 51(4):790-797.
[14] 蒋艳方, 陈基旺, 崔璨, 等. 杂交稻头季与再生季镉积累分配特性差异研究. 中国水稻科学, 2022, 36(1):55-64.
doi: 10.16819/j.1001-7216.2022.201108
[15] 熊若愚, 解嘉鑫, 谭雪明, 等. 不同灌溉方式对南方优质食味晚籼稻产量及品质的影响. 中国农业科学, 2021, 54(7):1512-1524.
doi: 10.3864/j.issn.0578-1752.2021.07.015
[16] Zhang H, Xue Y, Wang Z, et al. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Science, 2009, 49(6):2246-2260.
doi: 10.2135/cropsci2009.02.0099
[17] 周欢, 原保忠, 柯传勇, 等. 灌溉水量对水稻生长和产量的影响. 灌溉排水学报, 2010, 29(2):99-101.
[18] 付景, 刘洁, 曹转勤, 等. 结实期干湿交替灌溉对2个超级稻品种结实率和粒重的影响. 作物学报, 2014, 40(6):1056-1065.
[19] 何海兵, 杨茹, 吴汉, 等. 干湿交替灌溉下氮素形态对水稻花期光合及产量形成的影响. 西北植物学报, 2017, 37(11):140-147.
[20] 周峥嵘, 傅志强. 不同水分管理方式对水稻生长及产量的影响. 作物研究, 2012, 26(增1):5-8.
[21] 张武益, 朱利群, 王伟, 等. 不同灌溉方式和秸秆还田对水稻生长的影响. 作物杂志, 2014(2):113-118.
[22] 徐芬芬, 曾晓春, 石庆华, 等. 不同灌溉方式对水稻生长与产量的影响. 江西农业大学学报, 2005, 27(5):653-658.
[23] 周文新, 易镇邪, 屠乃美, 等. 头季稻齐穗期剑叶光合产物分配与再生稻产量的相关性. 核农学报, 2008, 22(6):860-864.
[24] Belder P, Bouman B, Cabangon R, et al. Effect of water saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agricultural Water Management, 2004, 65(3):193-210.
doi: 10.1016/j.agwat.2003.09.002
[25] Nishiuchi S, Yamauchi T, Takahashi H, et al. Mechanisms for coping with submergence and waterlogging in rice. Rice, 2011, 5(1):2-3.
doi: 10.1186/1939-8433-5-2
[26] Jean, Armstrong, William. Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Annals of Botany, 2005, 12(7):12-13.
[27] Liu J, Cao C, Wong M, et al. Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake. Journal of Environmental Sciences, 2010, 15(7):312-318.
[28] 胡莹, 黄益宗, 黄艳超, 等. 不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响. 农业环境科学学报, 2013, 32(3):432-437.
[29] 刘侯俊, 胡向白, 张俊伶, 等. 水稻根表铁膜吸附镉及植株吸收镉的动态. 应用生态学报, 2007, 13(2):425-430.
[30] 易镇邪, 苏雨婷, 谷子寒, 等. 不同生育阶段间歇灌溉对镉污染稻田双季稻产量构成与镉累积的影响. 水土保持学报, 2019, 33(5):364-368.
[31] 苏雨婷, 赵英杰, 谷子寒, 等. 灌溉方式对土壤有效镉含量与双季稻产量形成及镉累积分配的影响. 作物研究, 2018, 32(3):180-187.
[32] 陈喆, 张淼, 叶长城, 等. 富硅肥料和水分管理对稻米镉污染阻控效果研究. 环境科学学报, 2015, 35(12):4003-4011.
[33] 杨小粉, 吴勇俊, 张玉盛, 等. 水分管理对水稻镉吸收的影响. 中国稻米, 2019, 25(4):34-37.
doi: 10.3969/j.issn.1006-8082.2019.04.008
[34] 贺前锋, 桂娟, 刘代欢, 等. 淹水稻田中土壤性质的变化及其对土壤镉活性影响的研究进展. 农业环境科学学报, 2016, 35(12):2260-2268.
[35] Sun L, Zheng M, Liu H, et al. Water management practices affect arsenic and cadmium accumulation in rice grains. Scientific World Journal, 2014, 39(7):1-2.
[36] Zhou H, Zhu W, Yang W T, et al. Cadmium uptake, accumulation, and remobilization in iron plaque and rice tissues at different growth stages. Ecotoxicology and Environmental Safety, 2018, 152(5):91-97.
doi: 10.1016/j.ecoenv.2018.01.031
[37] 程东祥, 张玉川, 马小凡, 等. 长春市土壤重金属化学形态与土壤微生物群落结构的关系. 生态环境学报, 2009, 18(4):1279-1285.
doi: 10.16258/j.cnki.1674-5906(2009)04-1279-07
[38] 侯海军, 张文钊, 沈建林, 等. 水分管理对稻田细菌丰度与群落结构的影响. 生态环境学报, 2016, 25(9):1431-1438.
doi: 10.16258/j.cnki.1674-5906.2016.09.002
[39] Bastida F, Torres I F, Romero-Trigueros C, et al. Combined effects of reduced irrigation and water quality on the soil microbial community of a citrus orchard under semi-arid conditions. Soil Biology & Biochemistry, 2017, 104(17):226-237.
doi: 10.1016/j.soilbio.2016.10.024
[40] Somenahally A C, Hollister E B, Yan W, et al. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environmental Science & Technology, 2011, 45(19):8328.
doi: 10.1021/es2012403
[41] 刘利成, 刘三雄, 黎用朝, 等. 水稻镉积累与调控研究进展. 中国农学通报, 2016, 32(24):1-5.
doi: 10.11924/j.issn.1000-6850.casb15110029
[42] Gallego S M, Pena L B, Barcia R A, et al. Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms. Environmental and Experimental Botany, 2012, 83(14):33-46.
doi: 10.1016/j.envexpbot.2012.04.006
[43] 吴照祥, 孙小艳, 刘腾云, 等. 中、轻度污染农田杂交水稻对Cd的吸收和累积分布. 江西农业大学学报, 2019, 41(3):432-430.
[44] Kobayashi N I, Tanoi K, Hirose A, et al. Characterization of rapid intervascular transport of cadmium in rice stem by radioisotope imaging. Journal of Experimental Botany, 2012, 64(2):507-517.
doi: 10.1093/jxb/ers344
[45] 史磊, 郭朝晖, 梁芳, 等. 水分管理和施用石灰对水稻镉吸收与运移的影响. 农业工程学报, 2017, 33(24):111-117.
[46] 崔晓荧, 秦俊豪, 黎华寿. 不同水分管理模式对水稻生长及重金属迁移特性的影响. 农业环境科学学报, 2017, 36(11):2177-2184.
[47] 纪雄辉, 梁永超, 鲁艳红, 等. 污染稻田水分管理对水稻吸收积累镉的影响及其作用机理. 生态学报, 2007, 27(9): 3930-3939.
[48] 傅友强, 于晓莉, 杨旭健. 干湿交替诱导水稻根表铁膜形成的基因表达谱分析. 中国水稻科学, 2017, 31(2):133-148.
doi: 10.16819/j.1001-7216.2017.6115
[49] 林文雄, 陈鸿飞, 张志兴, 等. 再生稻产量形成的生理生态特性与关键栽培技术的研究与展望. 中国生态农业学报, 2015, 23(4):392-401.
[50] 居学海, 张长波, 宋正国, 等. 水稻籽粒发育过程中各器官镉积累量的变化及其与基因型和土壤镉水平的关系. 植物生理学报, 2014, 50(5):634-640.
[1] Zhang Guozhong, Li Juan, Li Yucai, Jin Shoulin, Hong Ruke, Huang Dajun, Pu Shihuang, Shi Congbo, Duan Zilin, Ma Di, Chen Lijuan. The Effects of Nitrogen Fertilizer Reduction and Transplanting Density on Yield and Eating Quality of Japonica Hybrid Rice Dianheyou 615 [J]. Crops, 2023, 39(3): 109-115.
[2] Ma Yihu, He Xianbiao, Chen Jian, Tang Xuejun, Wang Xuhui, He Haohao, Jin Yuqing, Qi Wen, Jiang Hailing, Zhou Cui. Effects of Seedling Ages on Grain Yield and Quality of High Quality Rice in Southeastern Zhejiang Province [J]. Crops, 2023, 39(3): 116-125.
[3] Zhao Yun, Feng Guojun, Hu Xiangwei, Wumaierjiang·Kuerban , Li Pengbing, Li Cuimei, Akebota·Muheyati . Preliminary Report on Selection of Herbicide-Resistant Foxtail Millet Varieties Suitable for Planting in Kashgar, Xinjiang [J]. Crops, 2023, 39(3): 126-133.
[4] Xing Pipeng, Huang Yanfeng, Yi Siyuan, Lan Rujian, Pan Shenggang, Mo Zhaowen, Tian Hua, Duan Meiyang, Tang Xiangru. Effects of Foliar Ornithine Spraying at Heading Stage on Yield, Quality and 2-Acetyl-1-Pyrroline Biosynthesis of Fragrant Rice [J]. Crops, 2023, 39(3): 134-138.
[5] Li Junzhi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effects of Nitrogen Application Levels on Yield and Quality of Different Strong Gluten Wheat Varieties [J]. Crops, 2023, 39(3): 148-153.
[6] Song Chunyan, Wan Yunfan, Li Yu’e, Cai Andong, Hu Yanyan, Zhou Hui, Zhu Bo, Wang Bin. Relationships between Tiller Dynamic, Earbearing Tiller Rate and Yield of Double Cropping Rice under Elevated Temperature and CO2 Concentration [J]. Crops, 2023, 39(3): 159-166.
[7] Xu Qian, Zeng Xinyu, Xiao Bo, Li Baozheng, Zhang Xingduan. Effects of Foliar Fertilizer on Yield and Quality of Shoot Tip in Leaf-Vegetable Sweet Potato [J]. Crops, 2023, 39(3): 183-187.
[8] Guo Shulei, Wang Ying, Wei Liangming, Zhang Xin, Liu Yan, Wu Weihua, Lu Daowen, Lei Xiaobing, Wang Zhenhua, Lu Xiaomin. Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions [J]. Crops, 2023, 39(3): 205-214.
[9] Luo Siwei, Shi Xiunan, Jia Yonghong, Zhang Jinshan, Wang Kai, Li Dandan, Wang Runqi, Dong Yanxue, Shi Shubing. Effects of Drip Irrigation Capillary Spacing and Drop Spacing on Photosynthesis, Dry matter Accumulation, and Yield Formation of Uniformly Sown Winter Wheat [J]. Crops, 2023, 39(3): 230-237.
[10] Shao Yang, Guo Yanping, Min Gengmei, Yang Xiaoming. Effects of Different Functional Herbicides on the Growth of Broad Bean and Field Weeds [J]. Crops, 2023, 39(3): 254-259.
[11] Zhang Haibin, Wu Xiaohua, Yu Meiling, Wang Xiaobing, Ye Jun, Cui Siyu, Li Yuanqing, Wang Zhanxian, Zhang Hongxu, Xue Wei, Li Yan, Cui Guohui, Zhao Xuanwei, Liu Juan. AMMI Model Analysis of Grain Yield of Wheat Varieties (Lines) in Inner Mongolia Regional Trials [J]. Crops, 2023, 39(3): 27-34.
[12] Li Jing, Li Pengcheng, He Yongbin, Xing Yaling, Meng Fanhua, Zhou Qian, Nan Ming. Multivariate Analysis and Comprehensive Evaluation of Main Characteristics of 16 Russian Winter Wheat Varieties [J]. Crops, 2023, 39(3): 58-65.
[13] Gao Zhenxian, Cao Qiao, Shan Zilong, Fu Xiaoyi, Han Ran, He Mingqi, Shi Zhanliang, Zheng Shusong. Preliminary Study on the Influence of Late Spring Coldness on 323 Winter Wheat Germplasm Resources [J]. Crops, 2023, 39(3): 86-93.
[14] Wei Yunfei, Li Meng, Ji Xin, Liu Juan, Wang Fujuan, Liu Qiuyuan. Effects of Different Tillage and Sowing Methods on the Growth and Yield of Direct-Seeding Rice under Full Returning of Straw [J]. Crops, 2023, 39(3): 94-100.
[15] Yang Shiqi, Chen Liming, Zhou Yanzhi, Tan Xueming, Zeng Yongjun, Shi Qinghua, Pan Xiaohua, Zeng Yanhua. Effects of Weeds Control on the Yield and Quality of Double- Cropping Direct-Seeded High-Quality Late Indica Rice [J]. Crops, 2023, 39(2): 121-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!