Crops ›› 2023, Vol. 39 ›› Issue (4): 71-76.doi: 10.16035/j.issn.1001-7283.2023.04.011

Previous Articles     Next Articles

Comparison ofPhenotype and Marker Detection in Seed Purity of Thermo-Photo Sensitive Two-Line WheatHybrids

Li Hongsheng1(), Li Shaoxiang1(), Yang Zhonghui1, Yang Jiali2, Liu Kun1, Xiong Shian3, Li Fuqian1, Guo Hui1, Yang Mujun1()   

  1. 1Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
    2College of Agriculture, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    3Seed Management Station of Zhenxiong County, Zhaotong 657200, Yunnan, China
  • Received:2022-03-21 Revised:2022-04-06 Online:2023-08-15 Published:2023-08-15

Abstract:

The purity identification of hybrid seeds is one of key steps in the production and application of thermo-photo sensitive wheat hybrids. At present, seed purity is determined mainly by field phenotypic identification of planted hybrids in the field, which takes a long time.The purity of two elite combinations K64S/20Y4-5 and K64S/MR1238 were tested by phenotypic identification in field and SSR fluoresent marker screening. Meanwhile, the results of identification of two ways were compared. The results showed that the purity of two hybrids were 98.84% and 97.93% respectively through phenotypic identification in field. There were three pairs of primers (barc164, gwm161 and gwm610) of eight pairs of primers showed polymorphism between parents. The purities of two hybrids were 97.73% and 97.21% using primer of barc164, respectively, slightly lower than those of phenotypic identification in field, but there was no significantly difference between two methods. In addition, SSR fluoresent marker could not only distinguish seeds including self-cross single plant of sterile line and mechanical mixture of male parent, but also accurately identify pseudo-hybrids caused by impure male parents and outcrossing with foreign pollens in hybrid seed production. Therefore, SSR fluorescent markers could be replaced phenotypic identification for quickly testing the purity of hybrids.

Key words: Wheat, Thermo-photo sensitive genic male sterile line, Hybrid, Purity, SSR

Table 1

Primersequences of SSR markers"

引物名称Primer name 染色体分布Chromosome location 引物序列(5′-3′)The sequence of primer(5′-3′)
barc324 3A F:CCAATTCTGCCCATAGGTGA
R:GAGGAAATAAGATTCAGCCAACTG
barc164 3B F:TGCAAACTAATCACCAGCGTAA
R:CGCTTTCTAAAACTGTTCGGGATTTCTAA
cfa2028 7A F:TGGGTATGAAAGGCTGAAGG
R:ATCGCGACTATTCAACGCTT
cfa2123 7A F:CGGTCTTTGTTTGCTCTAAACC
R:ACCGGCCATCTATGATGAAG
gwm155 3A F:CAATCATTTCCCCCTCCC
R:AATCATTGGAAATCCATATGCC
gwm161 3D F:GATCGAGTGATGGCAGATGG
R:TGTGAATTACTTGGACGTGG
gwm304 5A F:AGGAAACAGAAATATCGCGG
R:AGGACTGTGGGGAATGAATG
gwm610 4A F:AGGAAACAGAAATATCGCGG
R:AGGACTGTGGGGAATGAATG

Table 2

Phenotyping identificationin plant height ofhybrids"

杂交种
Hybrid
鉴定株数
Number of
tested plants
表型“1”株数
Number of plants
with phenotype “1”
表型“2”株数
Number of plants
with phenotype “2”
表型“3”株数
Number of plants
with phenotype “3”
纯度
Purity
(%)
K64S/MR1238 1467 8 9 1450 98.84
K64S/20Y4-5 1448 23 7 1418 97.93

Table 3

Polymorphic primer screening between parents"

亲本Parent barc164 barc324 cfa2028 cfa2123 gwm155 gwm161 gwm304 gwm610
20Y4-5 211 258 275 270 165 192 222 189
MR1238 199 264 277 270 147 195 222 189
K64S 208 264 277 270 147 174 222 193

Fig.1

The peak spectrum of polymorphic primers of three parents"

Table 4

Comparison of the purity of 574 hybrids tested by phenotype and marker identification"

组合
Combination
鉴定数
Number
of tested
plants
表型“1”
株数
Number of
plants with
phenotype “1”
表型“2”
株数
Number of
plants with
phenotype “2”
表型“3”
株数
Number of
plants with
phenotype “3”
表型纯度
Purity
identifiedby
phenotype
(%)
母本基因
型数量
Number of
femaleparent
genotypes
父本基因
型数量
Number of
male parent
genotypes
杂合基因型
Heterozygous
genotype
其他基因型
Number of
other
genotypes
标记纯度
Purity
identified
by the
marker(%)
K64S/MR1238 574 4 5 565 98.43 4 5 561 4 97.73
K64S/20Y4-5 574 9 4 561 97.74 9 4 558 3 97.21
[1] Zheng H, Wang R, Jiang Q, et al. Identification and functional analysis of a pollen fertility-associated gene GhGLP4 of Gossypium hirsutum L.. Theoretical and Applied Genetics, 2021, 134(10):1-11.
doi: 10.1007/s00122-020-03709-7
[2] Yang W B, Qin Z L, Sun H, et al. Yield-related agronomic traits evaluation for hybrid wheat and relations of ethylene and polyamines biosynthesis to filling at the mid-grain filling stage. Journal of Integrative Agriculture, 2020, 19(10):2407-2418.
doi: 10.1016/S2095-3119(19)62873-X
[3] Gupta P K, Balyan H S, Gahlaut V, et al. Hybrid wheat:past,present and future. Theoretical and Applied Genetics, 2019, 132:2463-2483.
doi: 10.1007/s00122-019-03397-y
[4] Murai K, Ohta H, Takenouchi Y, et al. Trials for hybrid seed production and estimation of wheat F1 hybrids produced by outcrossing using photoperiod-sensitive cytoplasmic male sterile (PCMS) system with elite lines. Journal of Agricultural and Crop Research, 2019, 7(7):119-126.
doi: 10.33495/jacr
[5] Okada T, Jayasinghe J E, Eckermann P, et al. Effects ofRht-B1andPpd-D1loci on pollinator traits in wheat. Theoretical and Applied Genetics, 2019, 132:1965-1979.
doi: 10.1007/s00122-019-03329-w
[6] 李罗江, 茹振刚, 高庆荣, 等. 小麦雄性不育系BNS及其杂种F1的育性分析. 麦类作物学报, 2009, 29(4):583-587.
[7] 张建奎, 董静, 余国东, 等. 光照强度对温光敏细胞核雄性不育小麦育性的影响. 植物遗传资源学报, 2011, 12(2):301-306.
doi: 10.13430/j.cnki.jpgr.2011.02.021
[8] 李绍祥, 顾坚, 田玉仙, 等. 云南杂交小麦制种技术研究进展. 种子, 2011, 30(7):59-63.
[9] 陶军, 李生荣, 周强, 等. 中国西南温光型两系杂交小麦研究进展. 中国农学通报, 2017, 33(32):1-8.
doi: 10.11924/j.issn.1000-6850.casb16110032
[10] 黄铁城. 杂种小麦研究进展. 北京: 北京农业大学出版社, 1990:1-22.
[11] 张胜全, 赵昌平. 春季限水灌溉对杂交小麦产量形成的影响研究.中国作物学会学术年会, 2013.
[12] Zhao YS, Thorwarth P, Jiang Y, et al. Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat. Science Advances, 2012, 7(24):9106.
[13] 刘军, 周晓慧, 庄勇. 茄子杂交品种种子纯度的SSR分子标记鉴定. 分子植物育种, 2013, 11(6):790-794.
[14] 王本勋, 刘玉春. 浅谈杂交水稻种子纯度田间小区种植鉴定. 种子, 2001(5):60-61.
[15] 张敏, 谈太明, 徐长城, 等. SSR分子标记技术在茄子杂交种子纯度鉴定中的应用. 湖北农业科学, 2013, 52(8):1959-1962.
[16] 赖元洪. 杂交水稻种子真实性与纯度鉴定. 中国种业, 2015 (6):19-21.
[17] Liu S, Anderson J A. Marker assisted evaluation of fusarium head blight resistant wheat germplasm. Crop Science, 2003, 3:760-766.
[18] 张海萍, 常成, 游光霞, 等. 中国小麦微核心种质及地方品种籽粒休眠特性的分子标记鉴定. 作物学报, 2010, 36(10):1649-1649.
doi: 10.3724/SP.J.1006.2010.01649
[19] 陈天青, 隋建枢, 张立异, 等. 贵州小麦育种核心种质的遗传多样性分析. 西南农业学报, 2015, 28(5):1879-1887.
[20] Noli E, Teriaca M S, Sanguineti M C, et al. Utilization of SSR and AFLP markers for the assessment of distinctness in durum wheat. Molecular Breeding, 2008, 22(2):301-313.
doi: 10.1007/s11032-008-9176-4
[21] 张晗, 姚凤霞, 刘永杰, 等. EST-SSR标记在冬小麦品种DUS测试中的应用. 麦类作物学报, 2010, 30(5):801-806.
[22] 韩凤龙, 李正玲, 胡琳, 等. 用于河南省小麦品种特异性和一致性鉴定的SSR分子标记研究. 中国农业科学, 2010, 43(18):3698-3704.
[23] 郑永胜, 张晗, 王雪梅, 等. 小麦DUS测试已知品种DNA指纹数据库构建及其应用. 植物遗传资源学报, 2019, 20(4):845-853.
[24] 李根英, SusanneD, Marilyn L W, 等. 小麦指纹图谱数据库的建立及SSR分子标记试剂盒的研发. 作物学报, 2006, 32(12):1771-1778.
[25] Zhu Y, Hu J, Han R, et al. Fingerprinting and identification of closely related wheat (Triticum aestivum L.) cultivars using ISSR and fluorescence-labeled TP-M13-SSR markers. Australian Journal of Crop Science, 2011, 5(7):846-850.
[26] 李莉, 王俊峰, 颜廷进, 等. 基于SSR标记的山东省小麦DNA指纹图谱的构建. 植物遗传资源学报, 2013, 14(3):537-541.
doi: 10.13430/j.cnki.jpgr.2013.03.025
[27] 郑永胜, 张晗, 王东建, 等. 基于荧光检测技术的小麦品种SSR鉴定体系的建立. 中国农业科学, 2014, 47(19):3725-3735.
doi: 10.3864/j.issn.0578-1752.2014.19.001
[28] 王瑞, 张福耀, 程庆军, 等. 利用SSR荧光标记构建20个高粱品种指纹图谱. 作物学报, 2015, 41(4):658-665.
[29] 黄丹娟, 马建强, 马春雷, 等. 基于SSR荧光标记的MCID快速鉴定13个湖北茶树品种. 南方农业学报, 2018, 49(6):1045-1052.
[30] 赵欣欣, 于运国, 崔克艳. 玉米种子纯度室内检验方法的研究现状与应用展望. 种子科技, 2010, 28(1):24-27.
[31] 郝晨阳, 王兰芬, 贾继增, 等. SSR荧光标记和银染技术的比较分析. 作物学报, 2005, 131(12):144-149.
[32] 易红梅, 王凤格, 赵久然, 等. 玉米品种SSR标记毛细管电泳荧光检测法与变性PAGE银染检测法的比较研究. 华北农学报, 2006, 21(5):64-67.
doi: 10.3321/j.issn:1000-7091.2006.05.016
[33] 陈雅琼, 李凤霞, 李锡坤, 等. 烟草SSR荧光标记与毛细管电泳检测技术研究. 中国烟草科学, 2011(2):72-76,86.
[34] 王燕龙, 单雷, 付春, 等. 不同SSR标记检测技术及其在花生栽培种遗传多样性分析中的应用. 植物遗传资源学报, 2014, 15(1):96-105.
doi: 10.13430/j.cnki.jpgr.2014.01.013
[35] 匡猛, 杨伟华, 张玉翠, 等. 棉花杂交种纯度的SSR标记检测及其与田间表型鉴定的相关性. 作物学报, 2011, 37(12):2299-2305.
doi: 10.3724/SP.J.1006.2011.02299
[36] 李倩, 汪端华, 杨建国. 两个茄子品种纯度SSR鉴定与田间检测分析. 分子植物育种, 2018, 16(1):334-338.
[1] Zhang Mingwei, Ding Jinfeng, Zhu Xinkai, Guo Wenshan. Analysis of High-Yielding Planting Density and Nitrogen Application in Super-Late Sowing Wheat Following Rice [J]. Crops, 2023, 39(4): 126-135.
[2] Song Xiao, Zhang Keke, Yue Ke, Huang Chenchen, Huang Shaomin, Sun Jianguo, Guo Tengfei, Guo Doudou, Zhang Shuiqing, Pei Minnan. Differences of Enzyme Activities and Bacterial Communities in Rhizosphere Soil of Wheat Varieties with Different Nitrogen Efficiency [J]. Crops, 2023, 39(4): 188-194.
[3] Le Lihong, Liu Kaili, Chen Zhongping, Wang Binqiang, Tang Zhou, Cheng Feihu, Zhang Kun. Effects of Application Time of N Fertilizer at Panicle Differentiation Stage on the Nitrogen Use Efficiencies, Yield and Quality of One-Season Indica-Japonica Hybrid Rice [J]. Crops, 2023, 39(4): 195-201.
[4] Fu Xiaoyi, Wang Hongguang, Liu Zhilian, Li Dongxiao, He Mingqi, Li Ruiqi. Effects of Water Stress on Growth of Different Wheat Varieties at Seedling Stage and Selection of Drought Resistant Varieties [J]. Crops, 2023, 39(4): 224-229.
[5] Chen Yuanyuan, Li Guangsheng, Liu Yang, He Yuqi, Zhou Meiliang, Fang Zhengwu. Molecular Cloning and Functional Identification of Resistance Gene FtTIR of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(4): 44-51.
[6] Liu Ying, Gu Yunyi, Zhang Weiyang, Yang Jianchang. Research Advances in the Effects of Water and Nitrogen and Their Interaction on the Grain Yield, Water and Nitrogen Use Efficiencies of Wheat [J]. Crops, 2023, 39(4): 7-15.
[7] Zhao Pengpeng, Li Luhua, Ren Mingjian, An Chang, Hong Dingli, Li Xin, Xu Ruhong. Bioinformatics and Expression Analysis of GzCIPK7-5B Gene in Wheat [J]. Crops, 2023, 39(4): 77-84.
[8] Li Haoran, Li Ruiqi, Li Yanming. Review of the Changes of Wheat Row Spacing Forms and the Affecting Factors in Haihe Plain [J]. Crops, 2023, 39(3): 12-19.
[9] Li Junzhi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effects of Nitrogen Application Levels on Yield and Quality of Different Strong Gluten Wheat Varieties [J]. Crops, 2023, 39(3): 148-153.
[10] Luo Siwei, Shi Xiunan, Jia Yonghong, Zhang Jinshan, Wang Kai, Li Dandan, Wang Runqi, Dong Yanxue, Shi Shubing. Effects of Drip Irrigation Capillary Spacing and Drop Spacing on Photosynthesis, Dry matter Accumulation, and Yield Formation of Uniformly Sown Winter Wheat [J]. Crops, 2023, 39(3): 230-237.
[11] Bai Kaihong, Abie Xiaobing, Xu Xiaoli, Jiang Na, Li Jianqiang, Luo Laixin. Analysis of Fungal Diversity in Seeds of Tartary Buckwheat from Liangshan, Sichuan Province [J]. Crops, 2023, 39(3): 260-266.
[12] Zhang Haibin, Wu Xiaohua, Yu Meiling, Wang Xiaobing, Ye Jun, Cui Siyu, Li Yuanqing, Wang Zhanxian, Zhang Hongxu, Xue Wei, Li Yan, Cui Guohui, Zhao Xuanwei, Liu Juan. AMMI Model Analysis of Grain Yield of Wheat Varieties (Lines) in Inner Mongolia Regional Trials [J]. Crops, 2023, 39(3): 27-34.
[13] Chen Cuiping, Yan Dianhai, Zhang Shumiao, Zuo Haonan, Gao Sen, Liu Yang. Fingerprint Construction and Genetic Diversity Analysis of Quinoa Based on SSR Markers [J]. Crops, 2023, 39(3): 35-42.
[14] Li Guangsheng, Lu Xiang, Lai Dili, Zhang Kaixuan, Wang Haihua, Zhou Meiliang. Molecular Cloning and Functional Analysis of Resistance Gene FtABCG12 of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(3): 43-50.
[15] Li Jing, Li Pengcheng, He Yongbin, Xing Yaling, Meng Fanhua, Zhou Qian, Nan Ming. Multivariate Analysis and Comprehensive Evaluation of Main Characteristics of 16 Russian Winter Wheat Varieties [J]. Crops, 2023, 39(3): 58-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!