Crops ›› 2023, Vol. 39 ›› Issue (4): 188-194.doi: 10.16035/j.issn.1001-7283.2023.04.027

Previous Articles     Next Articles

Differences of Enzyme Activities and Bacterial Communities in Rhizosphere Soil of Wheat Varieties with Different Nitrogen Efficiency

Song Xiao1,2(), Zhang Keke1, Yue Ke1, Huang Chenchen1, Huang Shaomin1(), Sun Jianguo3, Guo Tengfei1, Guo Doudou1, Zhang Shuiqing1, Pei Minnan1   

  1. 1Institute of Plant Nutrient and Environmental Resources, Henan Academy of Agricultural Sciences, Zhengzhou450002, Henan, China
    2450002, Henan, China
    3Puyang City Soil Fertilizer Station, Puyang 457000, Henan, China
  • Received:2022-02-11 Revised:2022-07-27 Online:2023-08-15 Published:2023-08-15

Abstract:

In order to explore the difference of wheat varieties with different nitrogen efficiency in microbial characteristics, a field experiment was set in 2018-2020 to study the differences in root activity, rhizosphere soil enzyme activities and microbial community diversity between 0 (N0) and 165kg/ha (N1) treatments of high nitrogen efficiency variety “Xuke 168” and low nitrogen efficiency variety “Zhengpinmai 8”. The results showed that the root vitalities first increased and then decreased with the advancement of growth process, and the root vigor at the booting stage was strongest. At the booting stage, compared with Zhengpinmai 8, the root activity, β-glucosidase, leucine amiopeptidase and polyphenol oxidase activities of Xuke 168 increased at N0 and N1 treatments. Under N0 treatment, the enrichment index and diversity index of bacteria of Xuke 168 were higher than those of Zhengpinmai 8, and the difference was not significant under N1 treatment. In the same treatment, the abundance of the dominant phyla of the two varieties was also different to a certain extent. Under the N0 treatment, the Acidobacteria and Thaumarchaeota of Xuke 168 were higher than those of Zhengpinmai 8; compared with Zhengpinmai 8, Acidobacteria of Xuke 168 decreased by 37.23% while the phylum Thaumarchaeota increased by 13.30%; the genus GP6 and Nitrososphaera were the dominant genera, and the Nitrososphaera Xuke 168 was significantly higher than that of Zhengpinmai 8 at two nitrogen levels. In conclusion, the nitrogen-efficient wheat variety Xuke 168 had higher root activity and rhizosphere soil enzyme activity at N0 and N1 treatments, and higher richness index and diversity index at N0 treatment. All of these may cause changes in the rhizosphere microenvironment, which may be changed due to different cultivation techniques (nitrogen application). Therefore, this study can provide reference for local selection of suitable wheat varieties and appropriate fertilization.

Key words: Wheat, Nitrogen efficiency, Rhizosphere, Enzyme activity, Bacterial diversity, Microbial community

Table 1

Soil enzyme names and their substrates"

土壤酶Soil enzyme 底物Substrate
BG 4-硝基苯基-β-D-吡喃葡萄糖苷
LAP L-亮氨酸-4-硝基苯胺
POX 连苯三酚

Fig.1

Root vitalities difference of the wheat varieties with different nitrogen efficiency The different lowercase letters indicate the significant difference at 0.05 level between treatments, the same below"

Table 2

Differences of soil enzyme activities in the rhizosphere of different genotypes of wheat nmol/(h?g)"

年份Year 处理Treatment 品种Variety BG LAP POX
2018-2019 N0 许科168 534.24±11.32a 43.15±2.13a 12.41±0.54a
郑品麦8号 345.46±13.89b 28.62±3.02b 9.12±0.41b
N1 许科168 741.36±14.87a 49.12±4.51a 12.88±0.81a
郑品麦8号 674.13±21.02a 43.24±3.08a 11.45±0.49a
2019-2020 N0 许科168 548.00±11.84a 37.13±2.33a 12.49±0.50a
郑品麦8号 333.56±14.81b 31.10±3.22b 9.96±0.37b
N1 许科168 763.72±15.93a 51.52±4.11a 13.14±0.93a
郑品麦8号 702.77±19.00a 41.42±3.20a 12.41±0.61a

Table 3

Characteristics of α-diversity of rhizosphere soil bacteria in wheat varieties with different nitrogen efficiency"

处理
Treatment
品种
Variety
丰富度指数Enrichment index 多样性指数Diversity index
Chao指数Chao index ACE指数ACE index Shannon指数Shannon index Simpson指数Simpson index
N0 许科168 4454.21±126.30a 4484.52±154.21a 6.89±0.02a 1.00±0.01a
郑品麦8号 4154.82±135.13b 4177.22±126.64b 6.10±0.02b 0.99±0.02a
N1 许科168 3885.83±102.43a 3738.39±137.63a 5.82±0.03a 0.98±0.03a
郑品麦8号 4013.31±123.20a 4177.19±135.41a 6.13±0.01a 0.99±0.02a

Fig.2

Relative abundance of rhizosphere soil bacterial communities at the phylum level in wheat varieties with different nitrogen efficiency"

Fig.3

The relative abundance of rhizosphere soil predominant bacterial genera of wheat varieties with different nitrogen efficiency"

[1] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物―土壤微生物互作关系研究进展与展望. 植物生态学报, 2014, 38(3):298-310.
doi: 10.3724/SP.J.1258.2014.00027
[2] 李向岭, 纪朋涛, 周宝元, 等. 不同耐低氮玉米品种根系构型与氮素利用对氮肥的响应. 河北农业大学学报, 2019, 42(6):1-9.
[3] 刘梅, 吴广俊, 路笃旭, 等. 不同年代玉米品种氮素利用效率与其根系特征的关系. 植物营养与肥料学报 2017, 23(1):71-82.
[4] Bodirsky B L, Popp A, Lotze-Campen H. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications, 2014, 5:38-58.
[5] Hofmeier M, Roelcke M, Han Y. Nitrogen management in a rice-wheat system in the Taihu Region: Recommendations based on field experiments and surveys. Agriculture,Ecosystems and Environment, 2015, 209:60-73.
doi: 10.1016/j.agee.2015.03.032
[6] 张娟娟, 杜盼, 郭建彪, 等. 不同氮效率小麦品种临界氮浓度模型与营养诊断研究. 麦类作物学报, 2017, 37(11):1480-1488.
[7] 熊淑萍, 吴克远, 王小纯, 等. 不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析. 中国农业科学, 2016, 49(12):2267-2279.
doi: 10.3864/j.issn.0578-1752.2016.12.003
[8] 王丽芳, 张德健, 张婷婷. 耕作方式对燕麦田土壤微生物群落多样性的影响. 作物杂志, 2021(3):57-64.
[9] Qu Z, Li Y H, Xu W H. Different genotypes regulate the microbial community structure in the soybean rhizosphere. Journal of Integrative Agriculture, 2023, 22(2):585-597.
doi: 10.1016/j.jia.2022.08.010
[10] 董航宇. 粳稻高效利用氮的根际微生态研究:从土壤微生物到酶活性: 第十九届中国作物学会学术年会论文摘要集. 2020.
[11] 杨珍, 戴传超, 王兴祥, 等. 作物土传真菌病害发生的根际微生物机制研究进展. 土壤学报, 2019, 56(1):12-22.
[12] 王香生, 连延浩, 郭辉, 等. 小麦红花间作系统根际微生物群落结构及功能分析. 中国生态农学学报, 2023, 31(4):516-529.
[13] 黄炳林, 王孟雪, 金喜军, 等. 不同耕作处理对土壤微生物、酶活性及养分的影响. 作物杂志, 2019(6):104-113.
[14] 巩闪闪, 刘晓静, 张志勇, 等. 不同施氮措施对冬小麦农田土壤酶活性和氮转化的影响. 生态环境学报, 2020, 29(11):2215-2222.
doi: 10.16258/j.cnki.1674-5906.2020.011.009
[15] 宋晓, 张珂珂, 黄晨晨, 等. 基于主成分分析的氮高效小麦品种的筛选. 河南农业科学, 2020, 49(12):10-16.
[16] Qi R M, Li J, Lin Z A. Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Applied Soil Ecology, 2016, 102:36-45.
doi: 10.1016/j.apsoil.2016.02.004
[17] Burns R G, DeForest J L, Marxsen J. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 2013, 58:216-234.
doi: 10.1016/j.soilbio.2012.11.009
[18] Chen H, Li D J, Xiao K C. Soil microbial proces-ses and resource limitation in karst and non-karst forests. Functional Ecology, 2018, 32:1400-1409.
doi: 10.1111/fec.2018.32.issue-5
[19] DeForest J L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biology and Biochemistry, 2009, 41(6):1180-1186.
doi: 10.1016/j.soilbio.2009.02.029
[20] Ai C, Liang G, Sun J. Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma, 2012, 173:330-338.
[21] 刘高远, 和爱玲, 杜君, 等. 玉米秸秆还田量对砂姜黑土酶活性、微生物生物量及细菌群落的影响. 农业资源与环境学报, 2022, 39(5):1033-1040.
[22] Kiba T, Kudo T, Kojima M. Hormonal control of nitrogen acquisition: roles of auxin abscisic acid, and cytokinin. Journal of Experimental Botany, 2013, 62(4):1399-1409.
doi: 10.1093/jxb/erq410
[23] 王维, 吴景贵, 李蕴慧, 等. 有机物料对不同作物根系土壤腐殖质组成和结构的影响. 水土保持学报, 2017, 31(2):215-220.
[24] 康亮, 梁琼月, 姚一华, 等. 不同氮效率木薯品种根系形态、构型及氮吸收动力学特征. 植物营养与肥料学报, 2019, 25(11):1920-1928.
[25] 宋欣欣, 贺德先. 小麦生育后期主茎和分蘖次生根对籽粒产量和品质的影响. 麦类作物学报, 2011, 31(2):281-285.
[26] 宋海星, 王学立. 玉米根系活力及吸收面积的空间分布变化. 西北农业学报, 2005, 14(1):137-141.
[27] 刘小刚, 张富仓, 杨启良, 等. 玉米叶绿素、脯氛酸、根系活力对调亏灌溉和氮肥处理的响应. 华北农学报, 2009, 24(4):106-111.
doi: 10.7668/hbnxb.2009.04.022
[28] German D P, Weintraub M N, Stuart Grandy A, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 43(7):1387- 1397.
doi: 10.1016/j.soilbio.2011.03.017
[29] 刘龙, 李志洪, 赵小军, 等. 种还分离玉米秸秆还田对土壤微生物量碳及酶活性的影响. 水土保持学报, 2017, 31(4):259- 263.
[30] Böhme L, Langer U, Bhme F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agriculture,Ecosystems & Environment, 2005, 109:141-152.
doi: 10.1016/j.agee.2005.01.017
[31] 王梅, 晏梓然, 赵子文, 等. 黄土高原植被演替过程中相对土壤酶活性的变化特征. 水土保持学报, 2021, 35(5):181-187.
[32] 关颂娜, 吴凤芝, 姜爽. 不同氮素水平对不同氮效率黄瓜生长及其根际土壤酶活性的影响. 作物杂志, 2013(1):68-72.
[33] Saiya-cork R, Stnsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 2002, 34 (9):1309-1315.
doi: 10.1016/S0038-0717(02)00074-3
[34] Ullah S, Ai C, Hung S. The responses of extracellular enzyme activities and microbial community composition under nitrogen addition in an upland soil. PLoS ONE, 2019, 14(9):1-19.
[35] Sun H, Huang Q M, Su J. High effective expression of glutamine synthetase genes GS1 and GS2 in transgenic rice plants increase nitrogen-deficiency tolerance. Journal of plant physiology Molecular Biology, 2005, 31(5):492-498.
[36] 公锐华, 李静, 马军花, 等. 秸秆还田配施有机无机肥料对冬小麦土壤水氮变化及其微生物群落和活性影响. 生态学报, 2019, 39(6):2203-2214.
[37] 孙瑞波, 郭熙盛, 王道中. 长期施用化肥及秸秆还田对砂姜黑土细菌群落的影响微. 生物学通报, 2015, 42(10):2049-2057.
[38] 邱洁, 徐丽丽, 钱叶, 等. 不同品种桑树根际土壤细菌群落及土壤理化性质的研究. 蚕业科学, 2017, 43(4):568-576.
[39] 农泽梅, 史国英, 曾泉, 等. 不同甘蔗品种根际土壤酶活性及微生物群落多样性分析. 热带作物学报, 2020, 41(4):819-828.
[40] Jin Y, Qu J J, Ren G M. Effects of transgenic DREB soybean Dongnong 50 on the diversity of soil ammonia-oxidizing bacteria. Plant Protection, 2013, 14(7):988-992,997.
[41] 张慧, 袁红朝, 朱亦君, 等. 不同利用方式对红壤坡地微生物多样性和硝化势的影响. 生态学杂志, 2011, 30(6):1169-1176.
[1] Zhang Mingwei, Ding Jinfeng, Zhu Xinkai, Guo Wenshan. Analysis of High-Yielding Planting Density and Nitrogen Application in Super-Late Sowing Wheat Following Rice [J]. Crops, 2023, 39(4): 126-135.
[2] Fu Xiaoyi, Wang Hongguang, Liu Zhilian, Li Dongxiao, He Mingqi, Li Ruiqi. Effects of Water Stress on Growth of Different Wheat Varieties at Seedling Stage and Selection of Drought Resistant Varieties [J]. Crops, 2023, 39(4): 224-229.
[3] Chen Yuanyuan, Li Guangsheng, Liu Yang, He Yuqi, Zhou Meiliang, Fang Zhengwu. Molecular Cloning and Functional Identification of Resistance Gene FtTIR of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(4): 44-51.
[4] Liu Ying, Gu Yunyi, Zhang Weiyang, Yang Jianchang. Research Advances in the Effects of Water and Nitrogen and Their Interaction on the Grain Yield, Water and Nitrogen Use Efficiencies of Wheat [J]. Crops, 2023, 39(4): 7-15.
[5] Li Hongsheng, Li Shaoxiang, Yang Zhonghui, Yang Jiali, Liu Kun, Xiong Shian, Li Fuqian, Guo Hui, Yang Mujun. Comparison ofPhenotype and Marker Detection in Seed Purity of Thermo-Photo Sensitive Two-Line WheatHybrids [J]. Crops, 2023, 39(4): 71-76.
[6] Zhao Pengpeng, Li Luhua, Ren Mingjian, An Chang, Hong Dingli, Li Xin, Xu Ruhong. Bioinformatics and Expression Analysis of GzCIPK7-5B Gene in Wheat [J]. Crops, 2023, 39(4): 77-84.
[7] Li Haoran, Li Ruiqi, Li Yanming. Review of the Changes of Wheat Row Spacing Forms and the Affecting Factors in Haihe Plain [J]. Crops, 2023, 39(3): 12-19.
[8] Li Junzhi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effects of Nitrogen Application Levels on Yield and Quality of Different Strong Gluten Wheat Varieties [J]. Crops, 2023, 39(3): 148-153.
[9] Luo Siwei, Shi Xiunan, Jia Yonghong, Zhang Jinshan, Wang Kai, Li Dandan, Wang Runqi, Dong Yanxue, Shi Shubing. Effects of Drip Irrigation Capillary Spacing and Drop Spacing on Photosynthesis, Dry matter Accumulation, and Yield Formation of Uniformly Sown Winter Wheat [J]. Crops, 2023, 39(3): 230-237.
[10] Bai Kaihong, Abie Xiaobing, Xu Xiaoli, Jiang Na, Li Jianqiang, Luo Laixin. Analysis of Fungal Diversity in Seeds of Tartary Buckwheat from Liangshan, Sichuan Province [J]. Crops, 2023, 39(3): 260-266.
[11] Zhang Haibin, Wu Xiaohua, Yu Meiling, Wang Xiaobing, Ye Jun, Cui Siyu, Li Yuanqing, Wang Zhanxian, Zhang Hongxu, Xue Wei, Li Yan, Cui Guohui, Zhao Xuanwei, Liu Juan. AMMI Model Analysis of Grain Yield of Wheat Varieties (Lines) in Inner Mongolia Regional Trials [J]. Crops, 2023, 39(3): 27-34.
[12] Li Guangsheng, Lu Xiang, Lai Dili, Zhang Kaixuan, Wang Haihua, Zhou Meiliang. Molecular Cloning and Functional Analysis of Resistance Gene FtABCG12 of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(3): 43-50.
[13] Li Jing, Li Pengcheng, He Yongbin, Xing Yaling, Meng Fanhua, Zhou Qian, Nan Ming. Multivariate Analysis and Comprehensive Evaluation of Main Characteristics of 16 Russian Winter Wheat Varieties [J]. Crops, 2023, 39(3): 58-65.
[14] Zhang Yufen, Qi Jingkai, Wang Guiling, Zhao Baoping, Zhou Lei. Study on Geographical Origin of Buckwheat Based on Mineral Element Fingerprint [J]. Crops, 2023, 39(3): 66-74.
[15] Gao Zhenxian, Cao Qiao, Shan Zilong, Fu Xiaoyi, Han Ran, He Mingqi, Shi Zhanliang, Zheng Shusong. Preliminary Study on the Influence of Late Spring Coldness on 323 Winter Wheat Germplasm Resources [J]. Crops, 2023, 39(3): 86-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!