Crops ›› 2023, Vol. 39 ›› Issue (4): 230-236.doi: 10.16035/j.issn.1001-7283.2023.04.033

Previous Articles     Next Articles

Analysis of Metabolites and Pathways in Adzuki Bean Seedlings under Fomesafen Stress

Yang Jian1,2(), Tang Huacheng1,2,3,4(), Cao Dongmei1,2,3,4(), Cui Hang1,2, Lou Yuhao1,2, Wang Jifei1,2, Zhang Dongjie1,3,5   

  1. 1College of Food Science, Heilongjiang Bayi Agricultural University, Daqing 163319, Heilongjiang, China
    2Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, Heilongjiang, China
    3Heilongjiang Engineering Research Center for Coarse Cereals Processing and Quality Safety, Daqing 163319, Heilongjiang, China
    4National Coarse Grain Engineering Research Center, Daqing 163319, Heilongjiang, China
    5Beidahuang Modern Agricultural Industrial Technology Provincial Cultivation Collaborative Innovation Center, Daqing 163319, Heilongjiang, China
  • Received:2022-05-12 Revised:2022-09-15 Online:2023-08-15 Published:2023-08-15

Abstract:

To explore the regulatory mechanism of field spraying fomesafen (FSA) on the growth and metabolism of adzuki bean seedlings, using the adzuki bean seedlings sprayed with or without FSA as the experimental material, the metabolomics of adzuki bean seedlings was analyzed by liquid chromatography-mass spectrometry (LC-MS). The results showed that compared with the unsprayed adzuki bean seedlings (Z-2-ZZ-2) group, the significantly changed differential metabolites were screened, 106 in the cation mode (50 up-regulated, 56 down-regulated), 130 in anion mode (42 up-regulated, 88 down-regulated), five metabolic pathways with significant differences (pyrimidine metabolism, isoflavone biosynthesis, purine metabolism, galactose metabolism, and arginine and proline metabolism) were annotated in cation mode, mapped to 13 differential metabolites, and annotated to two significantly different metabolic pathways (anthocyanin biosynthesis and flavonoid biosynthesis) in anion mode, mapped to five differential metabolites. Phenylpropane and polyketides, lipids and lipid molecules, and organic acids and their derivatives played a major role in the resistance of adzuki bean seedlings to FSA stress. It provided new ideas for the safety evaluation of the use of FSA in the field of adzuki bean and for increasing the income and yield of adzuki bean.

Key words: Adzuki bean, Seedlings, Fomesafen (FSA), Liquid chromatography-mass spectrometry (LC-MS), Metabolites, Metabolic pathways

Fig.1

Scores of principal component analysis of adzuki bean seedlings in Z-2-ZZ-2 and Z-2-ZZ groups"

Fig.2

OPLS-DA replacement test results of adzuki bean seedlings in Z-2-ZZ-2 and Z-2-ZZ groups"

Fig.3

Volcanic figure of different metabolites of adzuki bean seedlings under FSA stress"

Table 1

"

化合物分类
Classification of compound
差异代谢物总数量
Total quantity of differential
metabolites
显著上调
Significant up
regulation
显著下调
Significant down-
regulation
苯丙烷和聚酮化合物Phenylpropane and polyketone compounds 13 10 3
苯类Benzene 2 2 0
核苷、核苷酸和类似物Nucleosides, nucleotides and analogues 3 0 3
均质非金属化合物Homogeneous non-metallic compound 1 0 1
有机氮化合物Organic nitrogen compounds 1 0 1
有机酸及其衍生物Organic acids and their derivatives 11 0 11
有机氧化合物Organic oxygen compounds 12 11 1
有机杂环化合物Organic heterocyclic compounds 8 2 6
脂质和类脂分子Lipids and lipid molecules 19 8 11
其他Others 36 17 19
合计Total 106 50 56

Table 2

"

化合物分类
Classification of compound
差异代谢物总数
Total quantity of differential
metabolites
显著上调
Significant up
regulation
显著下调
Significant down-
regulation
苯丙烷和聚酮化合物Phenylpropane and polyketone compounds 14 10 4
苯类Benzene 3 2 1
核苷、核苷酸和类似物Nucleosides, nucleotides and analogues 4 0 4
有机氮化合物Organic nitrogen compounds 1 0 1
有机酸及其衍生物Organic acids and their derivatives 34 2 32
有机氧化合物Organic oxygen compounds 12 7 5
有机杂环化合物Organic heterocyclic compounds 10 7 3
脂质和类脂分子Lipids and lipid molecules 40 10 30
其他Others 12 4 8
合计Total 130 42 88

Fig.4

Bubble diagram of topological analysis of metabolic pathway of adzuki bean seedlings under FSA stress The bubbles in the figure represent the path; Impact value indicates the importance of the path -Log10P indicates enrichment significance"

Table 3

Enrichment of metabolic pathway in adzuki bean seedlings under FSA stress (cation)"

通路名称
Path name
通路代谢物总数
Total pathway
metabolites
富集代谢物个数
Number of enriched
metabolites
P
P-value
Impact值
Impact
value
代谢物名称及KEGG ID
Metabolite name and KEGG ID
嘧啶代谢
Pyrimidine metabolism
62
2
0.0235
0.1239
尿嘧啶C00106;胞嘧啶C00380
异黄酮生物合成
Isoflavone biosynthesis
49
3
0.0007
0.1078
2,7,4'-三羟基异黄酮C15567;甘氨酸C16195;毛蕊异黄酮C01562
嘌呤代谢
Purine metabolism
81
3
0.0031
0.0796
鸟嘌呤C00242;次黄嘌呤C00262;β-谷甾酮C00014
半乳糖代谢
Galactose metabolism
46
2
0.0136
0.0153
甘露三糖C05404;蔗糖C00089
精氨酸和脯氨酸代谢
Arginine and proline metabolism
72

3

0.0022

0.0073

4-(谷氨酰胺)丁酸酯C15767;对香豆酰腐胺C18326;(2 S)-2-(3-羧基丙酰氨基)-5-氧代戊酸C05932

Table 4

Enrichment of metabolic pathway in adzuki bean seedlings under FSA stress (anion)"

通路名称
Path name
通路代谢物总数
Total pathway
metabolites
富集代谢物个数
Number of enriched
metabolites
P
P-value
Impact值
Impact
value
代谢物名称及KEGG ID
Metabolite name and KEGG ID
花青素生物合成
Anthocyanin biosynthesis
41
2
0.0147
0.1284
矢车菊素-3-葡萄糖苷C12137;花葵素C05904
黄酮类生物合成
Flavonoid biosynthesis
68 4 0.0030 0.0208 根皮苷C01604;花葵素C05904;香树脂C00974;(2 R,3 R)-3,4',7-三羟基黄烷酮C09751
[1] 张波, 薛文通. 红小豆功能特性研究进展. 食品科学, 2012, 33(9):264-266.
doi: 10.7506/spkx1002-6630-201209055
[2] 陶波, 池源, 滕春红, 等. 助剂对氟磺胺草醚在土壤中分布影响研究. 东北农业大学学报, 2018, 49(4):21-28.
[3] 陈未, 李江叶, 刘丽珠, 等. 氟磺胺草醚对不同豆科作物生长及根际固氮菌的影响. 农业环境科学学报, 2021, 40(10):2076-2085.
[4] 季磊, 马晓健, 曲悠扬, 等. 高效液相色谱法测定甘草、黄芪和葛根中除草剂氟磺胺草醚和氯嘧磺隆的残留量. 农药科学与管理, 2020, 41(9):37-42.
[5] Wu X H, Zhang Y, Du P Q, et al. Impact of fomesafen on the soil microbial communities in soybean fields in Northeastern China. Ecotoxicology and Environmental Safety, 2017, 148(3):169-176.
doi: 10.1016/j.ecoenv.2017.10.003
[6] Li Z N, Gioia F D, Hwang J I, et al. Dissipation of fomesafen in fumigated, anaerobic soil disinfestation-treated, and organic- amended soil in Florida tomato production systems. Pest Management Science, 2020, 76(2):6-16.
[7] Meng L, Sun T, Li M, et al. Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress. Ecotoxicology and Environmental Safety, 2018, 171:75-83.
doi: 10.1016/j.ecoenv.2018.12.065
[8] Reed T V, Boyd N S, Wilson P C, et al. Persistence and movement of fomesafen in Florida strawberry production. Weed Science, 2018, 66(6):773-779.
doi: 10.1017/wsc.2018.48
[9] Khorram M S, Zheng Y, Lin D, et al. Dissipation of fomesafen in biochar-amended soil and its availability to corn (Zea mays L.) and earthworm (Eisenia fetida). Journal of Soils and Sediments, 2016, 16(10):2439-2448.
doi: 10.1007/s11368-016-1407-4
[10] 王法武, 杨微, 李洪鑫, 等. 氟磺胺草醚·烯草酮乳油对绿豆及红小豆田杂草药效试验. 东北农业科学, 2017, 42(4):30-32.
[11] 黄春艳, 王宇, 黄元炬, 等. 8种除草剂对红小豆田杂草的防除效果及对红小豆的安全性. 杂草科学, 2014, 32(1):101-106.
[12] 丁伟, 杨隆华, 程茁, 等. 氟磺胺草醚对大豆根瘤固氮酶活性及光合速率的影响. 作物杂志, 2010(4):81-84.
[13] 纪广影, 丁伟, 高文逸, 等. 氟磺胺草醚抑制大豆根瘤固氮酶活性与碳代谢关系的研究. 江苏农业科学, 2018, 46(8):92-95.
[14] 程茁, 杨隆华, 丁伟, 等. 氟磺胺草醚对大豆根瘤固氮和蔗糖代谢的影响. 作物杂志, 2011(6):24-27.
[15] Fiehn O. Metabolomics the link between genotypes and phenotypes. Plant Molecular Biology, 2002, 48(1):155-171.
doi: 10.1023/A:1013713905833
[16] 雷刚, 黄英金. 代谢组学在水稻研究中的应用进展. 中国农业科技导报, 2017, 19(7):27-35.
doi: 10.13304/j.nykjdb.2017.0068
[17] Feng Z, Sun X, Yang J, et al. Metabonomics analysis of urine and plasma from rats given long-term and low-dose dimethoate by ultra-performance liquid chromatography-mass spectrometry. Chemico-Biological Interactions, 2012, 199(3):143-153.
doi: 10.1016/j.cbi.2012.07.004 pmid: 22884955
[18] 庄明亮, 李志勇, 王进州, 等. 基于LC-MS技术的代谢组学方法研究吡虫啉对工蜂代谢的影响. 中国畜牧兽医, 2019, 46(8):2220-2227.
[19] 蔡光辉. 代谢组学技术研究苯唑草酮对玉米幼苗代谢的影响. 新乡:河南科技学院, 2021.
[20] 林立铭, 王琴飞, 余厚美, 等. 食用木薯块根冻结特性及代谢产物分析. 食品工业科技, 2022, 43(15):1-8.
[21] 王琪琪. 黑茶中散囊属真菌及其对茶叶品质提升研究. 贵阳:贵州师范大学, 2021.
[22] 李鑫磊, 俞晓敏, 林军. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较. 食品科学, 2020, 41(12):197-203.
doi: 10.7506/spkx1002-6630-20190128-358
[23] 张琴, 黄世安, 林欣, 等. 基于UPLC-MS/MS的3个李品种果实初生代谢物分析. 食品科学, 2022, 43(16):226-234.
[24] 张舒, 王长远, 冯玉超, 等. 气相色谱―质谱联用代谢组学技术分析不同产地稻米代谢物. 食品科学, 2021, 42(8):206-213.
[25] Ali R, Bushra S, Ali R, et al. Metabolomics: a way forward for crop improvement. Metabolites, 2019, 9(12):1-2.
doi: 10.3390/metabo9010001
[26] Seyed M N, Dunja Š, Michał T, et al. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology Advances, 2020, 38(13):5-6.
[27] 刘炎. 植物黄酮类化合物功能的研究进展. 科技信息, 2012 (18):131-132.
[28] 胡云霞, 樊金玲, 武涛. 黄酮类化合物分类和生物活性机理. 枣庄学院学报, 2014, 31(2):72-78.
[29] Rozmer Z, Perjési P. Naturally occurring chalcones and their biological activities. Phytochemistry Reviews, 2016, 15(1):87- 120.
doi: 10.1007/s11101-014-9387-8
[30] 赵宽, 周葆华, 马万征, 等. 不同环境胁迫对根系分泌有机酸的影响研究进展. 土壤, 2016, 48(2):235-240.
[31] 王兰兰, 宋晓卉, 杨笛, 等. 环境条件对植物有机酸影响研究进展. 沈阳师范大学学报(自然科学版), 2019, 37(3):236-239.
[32] Fatma K, Joachim K, Dale W H, et al. Exploring the temperature- stress metabolome of arabidopsis. Plant Physiology, 2004, 136 (4):4159-4168.
doi: 10.1104/pp.104.052142
[33] 郭家鑫, 鲁晓宇, 陶一凡, 等. 棉花在盐碱胁迫下代谢产物及通路的分析. 作物学报, 2022, 48(8):2100-2114.
doi: 10.3724/SP.J.1006.2022.14110
[34] 杨会议. 钯催化烯烃羰基化合成季碳中心酰胺. 西安: 西北大学, 2021.
[35] De Luca V, St-Pierre B. The cell and developmental biology of alkaloid biosynthesis. Trends in Plant Science, 2000, 5(4):168- 173.
pmid: 10740298
[36] 乔小燕, 马春雷, 陈亮. 植物类黄酮生物合成途径及重要基因的调控. 天然产物研究与开发, 2009, 21(2):354-360,207.
[37] 郭凤丹, 王效忠, 刘学英, 等. 植物花青素生物代谢调控. 生命科学, 2011, 23(10):938-944.
[38] 辛宇, 孙敬蒙, 张炜煜. 花青素生物活性及制剂的研究进展. 食品工业科技, 2021, 42(17):413-422.
[1] Jiang Shan, Liu Jia, Cao Liang, Ren Chunyuan, Jin Xijun, Zhang Yuxian. Effects of Exogenous Melatonin on Growth and Yield of Adzuki Bean under Drought Stress at Seedling Stage [J]. Crops, 2023, 39(4): 202-209.
[2] Li Jinghua, Yang Guangdong, Hu Zunyan, Hao Zhiyong, Sun Bangsheng, Chen Linqi, Wang Xueyang, Li Wan, Wan Shuming. Effects of Exogenous ABA Spraying at Different Stages on Carbon Metabolism, Endogenous Hormones and Yield Components of Adzuki Bean [J]. Crops, 2023, 39(3): 175-182.
[3] Gao Wei, Hao Qingting, Zhang Zeyan, Wang Qian, Yan Hubin, Zhu Huijun, Zhao Xueying, Zhang Yaowen. Effects of Nitrogen and Phosphorus Application on Yield, Root Morphology and Photosynthetic Characteristics of Adzuki Bean [J]. Crops, 2023, 39(1): 109-114.
[4] Li Diqin, Yao Shaoyun, Wang Qing, Yi Ke, Liu Yiyun, Tang Xiaoming, Peng Yuanyuan, Fu Changwu. Effects of Different Nitrogen Sources on the Growth and Development of Tobacco Seedlings [J]. Crops, 2023, 39(1): 201-206.
[5] Fan Duanyang, Yin Meiqiang, Wen Yinyuan, Guo Zhiyao, Wen Yanjie, Wang Yuqi, Sun Min, Gao Zhiqiang. Effects of Nitrate Nitrogen and Ammonium Nitrogen Ratio on the Growth and Nitrogen Utilization of Millet Seedlings [J]. Crops, 2023, 39(1): 96-102.
[6] Guo Juxian, Huang Jiaxin, Li Guihua, Fu Mei, Luo Wenlong, Wang Jun, Lu Meilian. Volatiles Metabolites Analysis and Evaluation on Quality Traits of Different Tora Varieties [J]. Crops, 2022, 38(6): 167-173.
[7] Du Fu, Xia Maolin, Liu Xinyuan, Yu Zhaojin, Zhang Zhan, Liu Yunfei, Ji Xiaoming. Effective Effects of Acrylamide/Carboxymethyl Cellulose/Biochar Composite Hydrogel on Cadmium Stress in Tobacco Seedlings [J]. Crops, 2022, 38(4): 138-145.
[8] Chen Zhongcheng, Jin Xijun, Li He, Zhou Weixin, Qiang Binbin, Liu Jia, Zhang Yuxian. Effects of Exogenous Melatonin on Growth, Photosynthetic Fluorescence Characteristics and Yield Components of Adzuki Bean [J]. Crops, 2021, 37(6): 88-94.
[9] Liu Zhenxing, Zhou Guimei, Ya Xiuxiu, Chen Jian, Meng Qingxiang, He Guoqing. Effects of Different Sowing Densities on the Morphological Traits and Yields of Three Adzuki Bean Varieties [J]. Crops, 2020, 36(6): 137-142.
[10] Ding Kaixin, Shan Ying, Feng Naijie, Zheng Dianfeng, Liang Xilong, Wu Qiong, Huang Wenting. Effects of DTA-6 on Physiological Metabolism and Yield of Two Edible Legumes [J]. Crops, 2020, 36(5): 148-153.
[11] Liu Jianxia,Bai Zezhen,Wang Runmei,Liu Lizhen,Zhang Zhenhua,Wen Riyu. Germination Characteristics and Accumulation Effects of Adzuki Bean under Heavy Metal Stress [J]. Crops, 2019, 35(6): 182-186.
[12] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L. [J]. Crops, 2019, 35(3): 185-191.
[13] Wang Lezheng,Hua Fangjing,Cao Pengpeng,Tian Yixin,Gao Fengju. Effects of Sowing Date and Planting Density on Yield and Related Traits in Adzuki Bean [J]. Crops, 2018, 34(6): 83-88.
[14] Mingcong Zhang,Yingce Zhan,Songyu He,Xijun Jin,Mengxue Wang,Chunyuan Ren,Yuxian Zhang. Effects of Different Nitrogen Fertilizer and Density Level on Dry Matter Accumulation and Yield of Adzuki Bean [J]. Crops, 2018, 34(1): 141-146.
[15] Xiyu Hao,Hongdan Wang,Zhichao Yin,Jie Liang,Fengxiang Yin,Jianjun Hao. Effects of PEG Stress on Drought Resistance at Seedling Stage of Adzuki Beans and the Establishment of Drought Resistance Identification System [J]. Crops, 2017, 33(4): 134-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!