Crops ›› 2023, Vol. 39 ›› Issue (6): 94-100.doi: 10.16035/j.issn.1001-7283.2023.06.013

Previous Articles     Next Articles

Drought Tolerance Evaluation of Soybean Mini Core Collections

Ren Honglei1,2(), Zhang Fengyi1, Han Xinchun1, Hong Huilong2, Zhu Xiao1,3, Wang Guangjin1, Qiu Lijuan2()   

  1. 1Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, Heilongjiang, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Heilongjiang University, Harbin 150086, Heilongjiang, China
  • Received:2022-03-18 Revised:2022-08-09 Online:2023-12-15 Published:2023-12-15

Abstract:

Drought resistance is an important ecological trait for high and stable yield of soybean with drought stress. Screening drought-tolerant germplasm resources to improve drought resistance of new varieties is one of the important ways to ensure high and stable yield of soybean. A total of 163 mini-core collections of soybean were used for drought resistance identification at soybean adult stage in Hainan province due to its dry and rainless climate featuring in winter. Four agronomic characteristics, plant height, the number of nodes, pod number per plant and seed number per plant were investigated. By using weighted membership function method and cluster analysis, total five drought resistance levels were found in 163 mini-core collections of soybean. Four accessions were identified as highly drought tolerant (level-1), namely ZDD02159, ZDD10430, ZDD13560, and ZDD16874, 14 drought resistant (level-2) germplasms, 52 moderate drought resistant (level-3) germplasms, 74 sensitive (level-4) germplasms, and 19 highly sensitive (level-5) germplasms. These research results and the excavation of drought resistant germplasms provide reference for the utilization of resources to broaden the genetic foundation and breed new drought resistant soybean varieties, as well as for the exploration and functional research of drought resistant genes.

Key words: Soybean, Mini core collection, Adult stage, Drought resistance, Comprehensive evaluation

Table 1

Description and analysis of agronomic characteristics of 163 soybean germplasm with drought stress and irrigation conditions"

性状
Trait
灌水处理Well-water 干旱处理Water-stressed
极小值
Min.
极大值
Max.
均值
Mean
SD CV 极小值
Min.
极大值
Max.
均值
Mean
SD CV
株高Plant height (cm) 9.00 57.00 26.04 10.24 39.33 6.67 43.80 14.55 5.88 40.42
主茎节数Number of nodes on main stem 4.80 14.00 8.31 1.48 17.80 4.00 10.80 6.18 1.06 17.16
单株荚数Pod number per plant 4.00 123.00 26.96 16.61 61.62 2.75 39.00 13.58 7.14 52.60
单株粒数Seed number per plant 6.00 265.00 48.21 32.67 67.77 3.50 78.80 21.56 13.60 63.06

Table 2

Variance analysis of agronomic characteristics of soybean germplasms (F test)"

变异来源
Source of variation
株高
Plant height (cm)
主茎节数
Number of nodes on main stem
单株荚数
Pod number per plant
单株粒数
Seed number per plant
环境Environment 2520.38** 1556.36** 570.98** 646.44**
基因型Genotype 14.18** 6.35** 4.95** 5.34**

Table 3

Drought resistance coefficient based on different identification indexes"

参数Parameter DCPH DCNS DCPP DCSP
极小值Min. 0.2053 0.4808 0.0547 0.0437
极大值Max. 1.6846 1.2500 2.1786 2.2069
均值Mean 0.6231 0.7624 0.6396 0.5902
SD 0.3013 0.1697 0.4376 0.4612
CV 0.4836 0.2226 0.6842 0.7814

Table 4

Membership function values of 163 soybeans based on four drought resistance coefficients"

参数Parameter μ(DCPH) μ(DCNS) μ(DCPP) μ(DCSP)
均值Mean 0.2207 0.3342 0.2754 0.2106
标准差Standard deviation 0.1592 0.2014 0.2060 0.1777
CV 0.7213 0.6027 0.7481 0.8439
权重Weight 0.2474 0.2067 0.2566 0.2894

Table 5

Correlation analysis between membership function values and D-values of drought tolerance coefficient based on each index"

参数
Parameter
μ(DCPH) μ(DCNS) μ(DCPP) μ(DCSP) D
D-value
μ(DCPH) 1.0000
μ(DCNS) 0.8179** 1.0000
μ(DCPP) 0.5530** 0.6419** 1.0000
μ(DCSP) 0.6029** 0.6444** 0.9625** 1.0000
D
D-value
0.8140** 0.8581** 0.9187** 0.9309** 1.0000

Fig. 1

Cluster analysis of drought resistance of 163 soybean germplasms"

Table 6

Grading results of drought resistance of 163 soybean germplasms based on D-value"

抗旱级别
Drought
resistance grade
D
D-value
材料数量
Number of
materials
材料编号
Code
高抗
High tolerance
0.6494~0.7365
4
ZDD16874、ZDD13560、ZDD02159、ZDD10430

Tolerance
0.4834~0.6074
14
ZDD12635、ZDD14409、ZDD14190、ZDD12680、ZDD10539、ZDD06515、ZDD02315、ZDD18277、ZDD02764、ZDD12322、ZDD12407、ZDD13233、ZDD12836、ZDD12453
中抗
Middle tolerance





0.2442~0.4367






52






ZDD14911、ZDD16954、ZDD12908、ZDD18524、ZDD12331、ZDD03969、ZDD02149、ZDD13666、ZDD16675、ZDD04620、ZDD14920、ZDD17767、ZDD07610、ZDD03570、ZDD12023、ZDD15357、ZDD14783、ZDD10186、ZDD03153、ZDD17375、ZDD02990、ZDD03741、ZDD12828、ZDD02114、ZDD04429、ZDD03533、ZDD10270、ZDD03739、ZDD04572、ZDD16846、ZDD19293、ZDD08564、ZDD14505、ZDD17457、ZDD11866、ZDD03603、ZDD03733、ZDD08352、ZDD02913、ZDD02866、ZDD02940、ZDD02134、ZDD03540、ZDD10100、ZDD04604、ZDD05920、ZDD17989、ZDD19579、ZDD02891、ZDD00610、ZDD13341、ZDD08251
敏感
Susceptibility








0.0908~0.2335









74









ZDD11092、ZDD16756、ZDD11586、ZDD04959、ZDD01720、ZDD11703、ZDD05502、ZDD14240、ZDD03868、ZDD14125、ZDD17574、ZDD14252、ZDD07218、ZDD06377、ZDD10812、ZDD08124、ZDD06438、ZDD11951、ZDD03293、ZDD01983、ZDD06375、ZDD04092、ZDD03776、ZDD08650、ZDD00932、ZDD05572、ZDD06363、ZDD08190、ZDD06562、ZDD08120、ZDD01489、ZDD08238、ZDD10615、ZDD02096、ZDD14782、ZDD11255、ZDD07580、ZDD20340、ZDD20387、ZDD06856、ZDD06378、ZDD19381、ZDD01060、ZDD03728、ZDD18835、ZDD18771、ZDD08633、ZDD11575、ZDD20671、ZDD06851、ZDD06803、ZDD00076、ZDD05494、ZDD18558、ZDD08728、ZDD06454、ZDD08603、ZDD00709、ZDD00059、ZDD06358、ZDD03106、ZDD00638、ZDD00046、ZDD07623、ZDD02864、ZDD00294、ZDD02892、ZDD01074、ZDD10252、ZDD01402、ZDD01629、ZDD19131、ZDD09279、ZDD00310
高敏感
High susceptibility
0.0214~0.0878

19

ZDD01683、ZDD08928、ZDD08018、ZDD11226、ZDD11323、ZDD00698、ZDD01421、ZDD00326、ZDD19027、ZDD04275、ZDD06543、ZDD08228、ZDD18870、ZDD20676、ZDD21030、ZDD07370、ZDD22145、ZDD11588、ZDD22188
[1] 邱丽娟, 常汝镇, 孙建英, 等. 中国大豆品种资源的评价与利用前景. 中国农业科技导报, 2000, 2(5):58-61.
[2] Dogan E, Kirnak H, Copur O. Deficit irrigations during soybean reproductive stages and CROPGRO-soybean simulations under semi-arid climatic conditions. Field Crops Research, 2007, 103 (2):154-159.
doi: 10.1016/j.fcr.2007.05.009
[3] Hufstetler E V, Boerma H R, Carter T E Jr, et al. Genotypic variation for three physiological traits affecting drought tolerance in soybean. Crop Science, 2007, 47(1):25-35.
doi: 10.2135/cropsci2006.04.0243
[4] Bruce W B, Edmeades G O, Barker T C. Molecular and physiological approaches to maize improvement for drought tolerance. Journal of Experimental Botany, 2002, 53(366):13-25.
pmid: 11741036
[5] 龚明. 作物抗旱性鉴定方法与指标及其综合评价. 云南农业大学学报, 1989, 4(1):73-81.
[6] 杨万明, 王敏, 李贵全, 等. PEG胁迫下大豆BIL群体芽期性状与耐旱性评价. 中国油料作物学报, 2013, 35(5):564-571.
doi: 10.7505/j.issn.1007-9084.2013.05.015
[7] Bouslama M, Schapaugh W T. Stress tolerance in soybeans. I. evaluation of three screening techniques for heat and drought tolerance1. Crop Science, 1984, 24(5):933.
doi: 10.2135/cropsci1984.0011183X002400050026x
[8] 李俐俐, 刘天学, 赵霞. 大豆种子萌发期对渗透胁迫的响应. 大豆科学, 2007, 26(4):550-554.
[9] 周玉丽, 朱平, 胡能兵, 等. 不同大豆品种发芽期耐旱性评价及耐旱种质筛选. 大豆科学, 2015, 34(4):616-623.
[10] 高小宽, 刘国杰, 白丽荣. 聚乙二醇(PEG)模拟干旱胁迫对野生大豆与栽培大豆萌发的影响. 大豆科学, 2012, 31(6):1027-1029.
[11] 祁旭升, 刘章雄, 关荣霞, 等. 大豆成株期抗旱性鉴定评价方法研究. 作物学报, 2012, 38(4):665-674.
[12] 张家榕, 李贵全. 大豆农艺性状与抗旱性研究. 山西农业大学学报(自然科学版), 2006, 26(2):143-145.
[13] 史宏, 路贵和, 马俊奎, 等. 野生大豆形态特征及生育特性研究. 山西农业科学, 2000, 28(3):29-31.
[14] 闫春娟, 宋书宏, 王文斌, 等. 大豆耐旱种质的鉴定. 大豆科学, 2015, 34(1):163-167.
[15] Wang L X, Guan R X, Liu Z X, et al. Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Science, 2006, 46(3):1032-1038.
doi: 10.2135/cropsci2005.0051
[16] 邱丽娟, 李英慧, 关荣霞, 等. 大豆核心种质和微核心种质的构建、验证与研究进展. 作物学报, 2009, 35(4):571-579.
[17] 邱丽娟, 常汝镇, 刘章雄, 等. 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006:18-23,72.
[18] 陈新, 张宗文, 吴斌. 裸燕麦萌发期耐盐性综合评价与耐盐种质筛选. 中国农业科学, 2014, 47(10):2038-2046.
doi: 10.3864/j.issn.0578-1752.2014.10.018
[19] 国家质量监督检验检疫总局. 小麦抗旱性鉴定评价技术规范:GB/T 21127-2007. 北京: 中国标准出版社, 2007.
[20] 河北省质量技术监督局. 玉米抗旱性鉴定技术规范:DB13/T 1282-2010. 北京: 中国标准出版社, 2010.
[21] 吉林省质量技术监督局. 玉米抗旱性鉴定技术规程:DB22/T 2017-2014. 北京: 中国标准出版社, 2014.
[22] 北京市市场监督管理局. 大豆品种抗旱性鉴定方法及评价:DB11/T 720-2010. 北京: 中国标准出版社, 2010.
[23] 崔杰印, 武婷婷, 宋雯雯, 等. 黑龙江中上游地区早熟野生大豆种质资源的抗旱性鉴定. 植物遗传资源学报, 2018, 19(6):1073-1082.
doi: 10.13430/j.cnki.jpgr.20180402002
[24] 王彩洁, 李伟, 徐冉, 等. 黄淮海地区主栽大豆品种抗旱性比较. 山东农业科学, 2018, 50(1):67-70.
[25] 梁成第. 大豆生态、形态及产量性状与抗旱性研究. 辽宁农业科学, 1990(2):3-8.
[26] 李志博, 林海荣, 魏亦农, 等. 北疆主栽棉花抗旱性生育期差异评价及鉴定体系的初步建立. 干旱地区农业研究, 2011, 29(3):84-90.
[27] 陈新闯, 郭建英, 董智, 等. 乌兰布和沙漠乌海段新月形沙丘表层沉积物粒度与重金属分布特征. 水土保持学报, 2015, 29(3):47-51.
[28] 翁锦辉. 南繁的农业气候条件分析与利用. 广西气象, 2003, 24(2):21-22.
[29] Fischer R A, Maurer R. Drought-resistance in spring wheat cultivars 1: Grain yield responses. Australian Journal of Agricultural Research, 1978, 29:897-912.
doi: 10.1071/AR9780897
[30] Blum A, Jordan W R. Breeding crop varieties for stress environments. Critical Reviews in Plant Sciences, 1985, 2:199-238.
doi: 10.1080/07352688509382196
[31] 兰巨生, 胡福顺, 张景瑞. 作物抗旱指数的概念和统计方法. 华北农学报, 1990, 5(2):20-25.
doi: 10.3321/j.issn:1000-7091.1990.02.004
[32] 王兴荣, 张彦军, 苟作旺, 等. 大豆种质资源抗旱性综合评价. 干旱地区农业研究, 2015, 33(5):17-23,40.
[1] Bai Jinghua, Jia Xiaomei, Wu Yanqing, Wang Yuekun, Song Weiyang, Liu Yinuo. Ability of DSE against Abiotic Stresses and Improving Drought Resistance of Solanum tuberosum [J]. Crops, 2023, 39(6): 150-159.
[2] Pei Chunling, Gu Yongzhe, Fu Jiaqi, Chao Shouwei, Lu Qian, Qiu Lijuan. Study on the Rapid Generation-Adding Technology of Huang-Huai-Hai Summer Soybean in Hainan [J]. Crops, 2023, 39(6): 35-40.
[3] Chang Shihao, Geng Zhen, Yang Qingchun, Shu Wentao, Li Jinhua, Li Qiong, Zhang Baoliang, Zhang Donghui. Correlation Analysis of Yield and Agronomic Traits of Summer Soybean Based on BLUP Value [J]. Crops, 2023, 39(5): 10-15.
[4] Han Dezhi, Liu Xianyuan, Wang Shu, Cai Xinxin, Wei Ran, Jia Hongchang, Yan Xiaofei, Wu Junyan. Evaluation and Selection of Soybean Varieties for Disaster Relief in Northern Heilongjiang [J]. Crops, 2023, 39(5): 16-23.
[5] Su Xiaoyu, Gao Tongmei, Zhang Pengyu, Li Feng, Wu Yin, Wang Dongyong, Tian Yuan, Wei Shuangling. Comprehensive Evaluation of Heat Resistance of Sesame Seedlings Based on Principal Component Analysis and Membership Function Method [J]. Crops, 2023, 39(4): 52-59.
[6] Pan Wenjing, Sun Yanan, Gao Lusi, Qu Mengnan, Zhang Weiyao, Fu Chunxu, Jiang Shibo, Jiang Chengxi, Fu Yashu, Wang Jinxing. Comprehensive Evaluation of Agronomic Characteristics of Soybean Resources in China and Europe [J]. Crops, 2023, 39(4): 91-97.
[7] Xu Xuewen, Wang Xingpeng, Wang Hongbo, Li Guohui, Tang Maosong, Cao Zhenxi. Effects of Salicylic Acid Application on the Growth and Physiological Characteristics of Cotton Seedlings under Salt Stress [J]. Crops, 2023, 39(3): 188-194.
[8] Wu Yan, Liu Kailou, Zhang Jingyun, Song Huijie, Hu Dandan. Improvement Effects of Soybean Meal and Its Biochar on Acid Paddy Soil and Yield of Rice [J]. Crops, 2023, 39(3): 200-204.
[9] Guo Hongxia, Wang Chuangyun, Deng Yan, Zhao Li, Zhang Liguang, Guo Hongxia, Qin Lixia, Gao Fei, Xi Ruizhen. Response of Quinoa to Low Nitrogen Stress [J]. Crops, 2023, 39(3): 221-229.
[10] Zhao Jingyun, Lü Xinyun, Liu Xiaorong, Ren Haihong, Ren Xiaojun, Ma Junkui. Effects of Strip Compound Intercropping under Young Walnut Forest on Soybean Growth and Yield [J]. Crops, 2023, 39(1): 136-142.
[11] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[12] Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60.
[13] Qi Guangxun, Dong Lingchao, Zhang Wei, Yuan Cuiping, Liu Xiaodong, Wang Yingnan, Dong Yingshan, Wang Yumin, Zhao Hongkun. Evaluation of Resistance to Soybean Mosaic Virus Strain 3 (SMV3) in Foreign Soybean Germplasm Resources [J]. Crops, 2022, 38(6): 70-74.
[14] Tang Jianghua, Du Xiaojing, Xu Wenxiu, Su Lili, Fang Yanfei, Xu Chao, An Chongxiao. Effects of Tillage Measures on Soil Nitrogen Characteristics under Total Straw Returning [J]. Crops, 2022, 38(5): 135-140.
[15] Hou Jingjing, Jin Fang, Zhao Li, Wang Bin. Comprehensive Evaluation of Agronomic and Quality Traits of 16 New Oil Flax Lines [J]. Crops, 2022, 38(5): 42-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!