Crops ›› 2023, Vol. 39 ›› Issue (6): 150-159.doi: 10.16035/j.issn.1001-7283.2023.06.021

Previous Articles     Next Articles

Ability of DSE against Abiotic Stresses and Improving Drought Resistance of Solanum tuberosum

Bai Jinghua1,2(), Jia Xiaomei1, Wu Yanqing1(), Wang Yuekun1, Song Weiyang1, Liu Yinuo1   

  1. 1College of Biochemical and Environmental Engineering, Baoding University, Baoding 071000, Hebei, China
    2College of Life Sciences, Hebei Agricultural University, Baoding 071000, Hebei, China
  • Received:2023-05-05 Revised:2023-09-19 Online:2023-12-15 Published:2023-12-15

Abstract:

In order to explore the effect of dark septate endophytes (DSE) on growth of potato (Solanum tuberosum), the stress tolerance of Alternaria alternata CTW-9 strain obtained in our lab were tested under ultraviolet ray, different pH, alkaline salt and heat treatments, and then CTW-9 strain was inoculated on potato roots to determine the vegetative growth and drought resistance physiology under different degrees of drought stress. The results showed that the colony diameter and hyphae diameter in the stressed CTW-9 strain was decreased evidently in comparison with the control strain. However, the inhibition of mycelial growth tended to stabilize after a certain decline under treatment with extremely stress conditions. The mycelial elongation growth of treated CTW-9 strains was suppressed markedly, the hyphal septum spacing became shorter than that of control strain, but bold growth was not depressed obviously and partial hyphae formed chlamydospore-like structure, and the strains still could grow as usual. At 30 days after inoculation, it was observed that CTW-9 strain colonized and grown in potato roots. Under different drought stresses, the plant height, fresh weight, dry weight, the relative water content, relative chlorophyll content of leaves, superoxide dismutase and peroxidase activities were increased in comparison with control potato plants. These findings indicate that CTW-9 strain has a strong ability to resist abiotic stresses, and can improve drought resistance significantly of potato plant and promote plant growth.

Key words: Dark septate endophytes, Alternaria alternata, Abiotic stresses, Solanum tuberosum, Drought resistance

Fig.1

Growth state and parameters of CTW-9 under ultraviolet stresses (a) The state of bacterial growth, (b) Growth parameters. t254nm is ultraviolet irradiation time of A254nm"

Table 1

Maximum diameter change models fitting of CTW-9 under different abiotic stresses"

非生物胁迫Abiotic stress 菌落最大直径Maximum colony diameter 菌丝最大直径Maximum hyphae diameter
紫外线处理Ultraviolet treatment y1=-0.3944x13+5.5119x12-24.079x1+61.386(R2=0.947) y2=-2.091ln(x1)+8.1515(R2=0.974)
pH处理pH treatment y1=0.4389x23-5.7833x22+19.263x2+22.8(R2=0.932) y2=-0.213x22+0.9644x2+6.999(R2=0.998)
碱性盐处理Alkaline salt treatment y1=41.711x3-0.226R2=0.928) y2=7.8267x3-0.172R2=0.948)
热处理Heat treatment y1=-11.15ln(x4)+44.155(R2=0.967) y2=-1.423ln(x4)+8.1713(R2=0.981)

Fig.2

Growth state and parameters of CTW-9 under extreme pH stresses (a) The state of bacterial growth, (b) Growth parameters. pHPDA is the pH of PDA"

Fig.3

Growth state and parameters of CTW-9 under alkaline salt stresses (a) The state of bacterial growth, (b) Growth parameters. c(NaHCO3) is the concentration of NaHCO3"

Fig.4

Growth state and parameters of CTW-9 under high temperature stresses (a) The state of bacterial growth, (b) Growth parameters. TCTW-9 is the heat treatment temperatures of CTW-9"

Fig.5

Colonization of CTW-9 in roots of potatoes The arrows point to the CTW-9 hyphae at potato roots colonization site"

Fig.6

Effects of CTW-9 on potato growth under drought stress Different letters indicate significant difference under drought stresses (P < 0.05),“*”indicates significant difference between CTW-9 and CK (P < 0.05), the same below"

Fig.7

Effects of CTW-9 on water and chlorophyll contents of potato leaves under drought stress"

Fig.8

Effects of CTW-9 on SOD and POD activities of potato under drought stress"

[1] 蔡仁祥, 吴早贵, 周建祥, 等. 中国马铃薯主食化——浙江省的发展对策. 基因组学与应用生物学, 2016, 35(2):467-471.
[2] 李倩. 马铃薯对水分胁迫的生理响应及抗旱调控措施研究. 呼和浩特:内蒙古农业大学, 2011.
[3] 伍玉菡, 尤逢惠, 万娅琼. 马铃薯贮藏·加工·主食化研究进展. 安徽农业科学, 2016, 44(29):71-72.
[4] 赵鸿, 任丽雯, 赵福年, 等. 马铃薯对土壤水分胁迫响应的研究进展. 干旱气象, 2018, 36(4):537-543.
doi: 10.11755/j.issn.1006-7639(2018)-04-0537
[5] 胡萌萌. 水分胁迫对马铃薯生长、生理特性、产量和品质的影响. 保定:河北农业大学, 2021.
[6] 王蕾, 张春楠, 李洪波, 等. 丛枝菌根真菌在蔬菜生产中的研究进展. 微生物学通报, 2021, 48(11):4282-4295.
[7] 张功, 旺庆, 峥嵘, 等. 不同VA菌根真菌对马铃薯生长的影响. 华北农学报, 2001, 16(4):115-118.
doi: 10.3321/j.issn:1000-7091.2001.04.024
[8] Li X, He X L, Hou L F, et al. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Scientific Reports, 2018, 8(1):7896.
doi: 10.1038/s41598-018-26183-0
[9] 张雪. 油蒿深色有隔内生真菌物种多样性和促生抗旱研究. 保定:河北大学, 2020.
[10] 吴艳清, 白菁华, 刘文静, 等. 一种深色有隔内生菌根真菌菌剂组合体制备方法:中国,201910963913.6. 2019-10-11.
[11] Dadachova E, Bryan R A, Huang X, et al. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE, 2007, 2(5):e457.
doi: 10.1371/journal.pone.0000457 pmid: 17520016
[12] Yu X, Huo L, Liu H, et al. Melanin is required for the formation of the multi-cellular conidia in the endophytic fungus Pestalotiopsis microspora. Microbiological Research, 2015, 179:1-11.
doi: 10.1016/j.micres.2015.06.004
[13] Kawamura C, Tsujimoto T, Tsuge T. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Molecular Plant-Microbe Interactions, 1999, 12(1):59-63.
pmid: 9885194
[14] 柴迪迪, 郭素娟, 孙小兵, 等. 燕山地区7种板栗外生菌根真菌培养条件的优化. 西北农林科技大学学报(自然科学版), 2014, 42(4):109-116.
[15] 邓勋, 宋小双, 尹大川, 等. 盐胁迫对2株深色有隔内生真菌(DSE)生长及营养代谢的影响. 中南林业科技大学学报, 2015, 35(5):1-8.
[16] 侯力峰. 三种荒漠植物深色有隔内生真菌物种多样性和耐盐性研究. 保定:河北大学, 2020.
[17] 宋小双, 邓勋, 遇文婧, 等. 盐胁迫对深色有隔内生真菌D575和D377生长及营养代谢的影响. 中国农学通报, 2015, 31 (13):36-42.
doi: 10.11924/j.issn.1000-6850.2014-1819
[18] Redman R S, Sheehan K B, Stout R G, et al. Thermotolerance generated by plant/fungal symbiosis. Science, 2002, 298(5598):1581.
pmid: 12446900
[19] Addy H D, Piercey M M, Currah R S. Microfungal endophytes in roots. Canadian Journal of Botany, 2005, 83:1-13.
doi: 10.1139/b04-171
[20] 刘燕霞, 龙俊萌, 王静茹, 等. 五种漠境深色有隔内生真菌对小麦促生抗旱效应研究. 中国科学:生命科学, 2021, 51(9):1339-1349.
[21] 汪娅琴. 深色有隔内生真菌和菌根菌混合接种对蓝莓幼苗促生抗旱的影响. 贵阳:贵州大学, 2021.
[22] 吴建慧, 郭瑶, 崔艳桃. 自然失水胁迫对绢毛委陵菜叶片超微结构的影响. 东北林业大学学报, 2011, 39(11):53-55,88.
[23] 谢小玉, 马仲炼, 白鹏, 等. 辣椒开花结果期对干旱胁迫的形态与生理响应. 生态学报, 2014, 34(13):3797-3805.
[24] 曹逼力, 李炜蔷, 徐坤. 干旱胁迫下硅对番茄叶片光合荧光特性的影响. 植物营养与肥料学报, 2016, 22(2):495-501.
[25] 黄文莉, 马杰, 江敏, 等. 干旱胁迫对马铃薯抗旱生理影响及相关基因的表达. 分子植物育种, 2021, 19(21):7213-7221.
[26] 张辉, 黄月, 邵雨晴, 等. 马铃薯响应干旱胁迫的生理和分子遗传机理研究现状与展望. 中国马铃薯, 2022, 36(2):165-176.
[27] 石经新. 西北荒漠黑枸杞深色有隔内生真菌时空分布和促生抗旱研究. 保定:河北大学, 2021.
[28] Anithakumari A M, Nataraja K N, Visser R G, et al. Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Molecular Breeding, 2012, 30(3):1413-1429.
pmid: 23024597
[29] Goswami A, Banerjee R, Raha S. Drought resistance in rice seedlings conferred by seed priming: role of the anti-oxidant defense mechanisms. Protoplasma, 2013, 250(5):1115-1129.
doi: 10.1007/s00709-013-0487-x
[1] Ren Honglei, Zhang Fengyi, Han Xinchun, Hong Huilong, Zhu Xiao, Wang Guangjin, Qiu Lijuan. Drought Tolerance Evaluation of Soybean Mini Core Collections [J]. Crops, 2023, 39(6): 94-100.
[2] Li An, Shu Jianhong, Liu Xiaoxia, Meng Zhengbing, Wang Xiaoli, Zhao Degang. Effects of Bacillus subtilis on Drought Resistance and Physiological Indexes of Maize Seeds under Drought Stress [J]. Crops, 2021, 37(6): 217-223.
[3] Wang Yun, Qiao Ling, Yan Suxian, Wu Bangbang, Zheng Xingwei, Zhao Jiajia. Analysis of the Yield Components and Drought Resistance of Dryland Wheat in Different Years from Shanxi Province [J]. Crops, 2021, 37(5): 43-49.
[4] Zhou Zichao, Hou Jianhua, Zhen Zilong, Shi Huimin. Drought-Resistance Identification and Evaluation of 152 Sunflower Recombinant Inbred Lines (RILs) at Seedling Stage [J]. Crops, 2020, 36(3): 47-52.
[5] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties [J]. Crops, 2019, 35(5): 41-45.
[6] Yue Linqi,Shi Weiping,Guo Jiahui,Guo Pingyi,Guo Jie. Response of Cutin Synthetic Genes of Foxtail Millet to Drought Stress [J]. Crops, 2019, 35(4): 183-190.
[7] Shuguang Wang,Yugang Shi,Huawei Shi,Yaping Cao,Daizhen Sun. Research on Relationship between Photosynthetic Characteristics and Drought Resistance in Spring Wheat [J]. Crops, 2017, 33(6): 23-29.
[8] Guolong Li,Yaqing Sun,Shiqin Shao,Yongfeng Zhang. Response of Antioxidant System to Drought Stress in Sugar Beet Leaves at Seedling Stage [J]. Crops, 2017, 33(5): 73-79.
[9] Wenwen Ji,Zeyan Zhang,Yaowen Zhang,Daizhen Sun. Identification of Drought Resistance of Adzuki Bean Germplasm Resources from Different Places in Budding Stage [J]. Crops, 2017, 33(3): 54-59.
[10] Chang Xu,Jinghui Liu,Yanming Yang,Xue Bai,Bin Ma,Xinglong Zhang,Mengyuan Sun,Mengyu Zhang. Effects of Bacterial Manure and Nitrogen and Phosphorus Fertilizer Combination on Drought Resistance Physiological Indexes and Yield of Potato under Plastic-Mulching [J]. Crops, 2017, 33(1): 94-99.
[11] Tongxin An,Mengli Chen,Feng Zhou,Jing Lu,Bozhi Wu,Lian'gen Zhang. Yield Benefit of Maize Planting Mode with Ditching and Pitting and Polythene Mulch Intercropping with Potato [J]. Crops, 2016, 32(5): 106-111.
[12] Yongxia Ren,Yupin Guo,Guihe Liu,Fang Sun,Chunmei Cao,Caiyue Xiao. Drought Resistance of Three Forage Species in Vicia during Germination Period [J]. Crops, 2016, 32(3): 158-162.
[13] Huatao Liu,Xuefang Huang,Mingjing Huang,Baoliang Chi,Xiuqing Zheng,Junfeng Chen. Effects of Drought Stress at Jointing Stage on Yield and Drought Resistance in Spring Maize [J]. Crops, 2016, 32(2): 89-94.
[14] Xiaodong Dai,Xinzhi Xu,Cancan Zhu,Yufeng Yang,Chunyi Wang,Xiaoping Yang,Guohong Yang,Junxia Li. Seeding Stage Response to Different Water Availability and Drought Resistance Evaluation of Foxtail Millet [J]. Crops, 2016, 32(1): 140-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!