Crops ›› 2023, Vol. 39 ›› Issue (6): 101-107.doi: 10.16035/j.issn.1001-7283.2023.06.014

Previous Articles     Next Articles

Study on the Grain Formation in Wheat Spike Regulated by Ethephon and 1-Methylcyclopropene

Zhang Rong1(), Jiang Enxi1, Chen Si1, Yu Xurun1, Chen Gang1, Ran Liping2(), Xiong Fei1   

  1. 1Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Guangling College of Yangzhou University, Yangzhou 225000, Jiangsu, China
  • Received:2022-08-08 Revised:2023-09-28 Online:2023-12-15 Published:2023-12-15

Abstract:

The spring wheat Yangmai 15 was used to explore the effects of ethylene on spike development and grain formation of wheat, wheat plants were treated with ethephon and ethylene receptor inhibitor 1- methylcyclopropene (1-MCP) at the stage of anther interval. The process of spike development and grain formation in different parts of spike before and after ethephon and 1-MCP treatment were explored by using grain morphology observation and spike character analysis. The results showed that, ethephon had no significant effects on the degeneration process of wheat floret, while 1-MCP significantly reduced the degeneration rate of wheat floret. Ethephon could promote grain maturation, accelerate grain development and reduce grain volume; 1-MCP could delay the growth of wheat, promote the growth of caryopsis and increase grain volume. Ethephon significantly decreased the plant height, the number of grains in the upper part of each spike, grain weight of the upper part of each spike and 1000-grain weight of wheat. The number of spikelets, grains per spike, and grains per spike were also significantly decreased at high concentration of ethephon. The 1-MCP could significantly increase the dry and fresh weight of caryopsis, the number of spikelets, the number of grains in the middle and basal spike, the number of grains and the grain weight per spike, and finally increased 1000-grain weight.

Key words: Wheat, Ethephon, 1-MCP, Floret degeneration, Grain

Fig.1

Floret morphology of wheat sprayed with ethephon and 1-MCP Ff: fertile floret; Df: degenerate floret"

Table 1

The number of fertile florets, degenerated florets and the rate of floret degeneration per spikelet of wheat treated with ethephon and 1-MCP for 16 days"

处理
Treatment
平均可育小花数
Average number
of fertile florets
平均退化小花数
Average number of
degenerated florets
小花退化率
Floret degeneration
rate (%)
CK 2.67±0.58c 3.33±0.58a 55.56±0.10a
E100 2.67±0.58c 3.33±0.58a 55.56±0.10a
E200 3.00±0.00bc 2.67±0.58ab 46.67±0.06ab
E400 3.00±0.00bc 2.67±0.58ab 46.67±0.06ab
M2 4.00±0.00a 2.00±0.00b 33.33±0.00b
M4 4.00±0.00a 2.00±0.00b 33.33±0.00b
M8 3.67±0.58ab 2.33±0.58b 38.89±0.10b

Fig.2

Changes of morphological development, length and width of wheat caryopsis after the treatment at anther connective stage"

Fig.3

Caryopsis of spikelets at the top, middle and base of wheat with different treatments"

Fig.4

Agronomic traits of wheat treated at anther connective stage Different lowercase letters indicate significant difference at 0.05 level"

[1] 刘慧. 全球小麦供需形势趋紧. 经济日报,2021-08-24(1).
[2] 赵荣, 曹洁, 朱婷婷. 浅议中国小麦的国际贸易及竞争力提升. 滁州学院学报, 2021, 23(1):14-19,41.
[3] 蒋赟, 王秀东. 我国小麦产业发展现状问题及对策浅析. 南方农业, 2020, 14(31):31-34,46.
[4] 王兆龙. 小麦小花发育的生理基础及调控研究. 南京: 南京农业大学, 2000.
[5] 王俊英, 赵春江, 杨宝祝. 小麦小花发育与退化的研究. 华北农学报, 1996, 11(2):9-13.
[6] 梅楠, 迟范民. 冬小麦穗粒形成的生物学分析及其肥水调控. 河南职技师院学报, 1990, 18(3/4):1-12.
[7] 张国泰. 小麦顶小穗的形成特点及其与大穗的关系. 作物学报, 1989, 15(4):349-354,384.
[8] 米国华, 梁振兴, 梅楠. 冬小麦穗-茎维管联络结构及其形成过程对幼穗生长发育的影响. 作物学报, 1995, 21(2):210-214.
[9] 曹卫星, 王兆龙, 戴廷波. 不同穗型小麦小花发育过程中幼穗和叶片内源激素水平的动态变化. 植物学报, 2000, 42(10):1026-1032.
[10] 郭西智, 陈锦永, 顾红, 等. 乙烯利在果蔬生产中的安全应用. 湖北农业科学, 2018, 57(8):5-8.
[11] 王志敏, 王树安, 苏宝林. 乙烯对小麦小花发育和结实的影响. 种子, 1996(2):15-17.
[12] 郭平毅, 姚满生, 来改英, 等. 乙烯利对冬小麦的调节效应. 山西农业大学学报, 1996, 16(2):109-114,210.
[13] 任小林, 童斌, 饶景萍. 新型乙烯作用抑制剂1-MCP在园艺产品保鲜中的应用. 保鲜与加工, 2002, 2(3):3-5.
[14] 胡筱, 潘浪, 丁胜华, 等. 1-MCP作用机理及其在果蔬贮藏保鲜中的应用研究进展. 食品工业科技, 2019, 40(8):304-309,316.
[15] 张伟. 小麦组织培养再生体系及单倍体植株诱导技术优化研究. 北京: 中国农业科学院, 2014.
[16] Sharipova G V, Veselov D S, Kudoyarova G R, et al. Effect of ethylene perception inhibitor on growth,water relations,and abscisic acid content in wheat plants under water deficit. Russian Journal of Plant Physiology, 2012, 59(4):573-580.
doi: 10.1134/S1021443712040127
[17] 段留生, 韩碧文, 何钟佩. 6-苄氨基嘌呤和乙烯利对小麦籽粒产量和品质的影响. 中国农业大学学报, 1998, 3(增4):1-6.
[18] 陈庆, 吕晓康, 李佳, 等. 外源亚精胺和乙烯利对干旱胁迫下小麦籽粒灌浆的影响及其生理机制. 西北农业学报, 2017, 26(7):998-1006.
[19] Kruk B C, Calderini D F, Slafer G A. Grain weight in wheat cultivars released from 1920 to 1990 as affected by post-anthesis defoliation. Journal of Agricultural Science,2000, 128(3):273- 281.
[20] Guo Z F, Slafer G A, Schnurbusch T. Genotypic variation in spike fertility traits and ovary size as determinants of floret and grain survival rate in wheat. Journal of Experimental Botany, 2016, 67 (14):4221-4230.
doi: 10.1093/jxb/erw200 pmid: 27279276
[21] 魏彬. 孕穗期低温胁迫下海藻糖对小麦小花退化的影响及生理机制. 杨凌: 西北农林科技大学, 2020.
[22] 梁雪莲, 杨文钰. 不同播期下烯效唑拌种对小麦生育进程与小穗数的影响. 四川农业大学学报, 1998, 16(4):10-14.
[23] 樊高琼, 杨文钰, 任万君, 等. 烯效唑在小麦上的应用研究. 农药科学与管理, 2003, 24(5):15-18.
[24] Sakuma S, Golan G, Guo Z, et al. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(11):5182-5187.
[25] 米国华, 李文雄. 小麦幼穗分化的温光反应研究-Ⅱ:光周期反应对小麦穗分化的影响. 东北农业大学学报, 1996, 27(3):209-218.
[26] 王月福, 于振文, 潘庆民, 等. 水分胁迫对耐旱性不同小麦小花分化发育和氮磷及激素含量的影响. 西北植物学报, 2000, 20(1):38-43.
[27] 朱慧杰, 郑春风, 张国钊, 等. 栽培管理模式对冬小麦小花发育与结实特性的影响. 麦类作物学报, 2014, 34(10):1383- 1389.
[28] 魏育明, 郑有良. 内源激素对小麦可育小花数的调控. 四川农业大学学报, 1998, 16(3):3-7.
[29] 张凡, 韩勇, 薛鑫, 等. 播期对不同类型小麦农艺性状及产量构成的影响. 山西农业科学, 2017, 45(9):1441-1444.
[30] 王飞, 徐梦彬, 周娜娜, 等. 不同氮肥运筹对晚播小麦农艺性状、产量及品质的影响. 山东农业科学, 2018, 50(12):59-63.
[31] 姜雪, 刘凤莲, 刘云国, 等. 小麦籽粒品质形成的影响因素及其生理机制. 分子植物育种, 2023, 21(1):284-292.
[32] 文廷刚. 植物生长调节剂对小麦抗倒伏能力、产量和品质的影响及其生理机理. 南京: 南京农业大学, 2012.
[33] 李睿, 兰盛银, 徐珍秀. 外源激素对小麦胚乳程序性细胞死亡和子粒灌浆的影响. 湖北农业科学, 2004(5):26-27,30.
[34] 秦武发, 董永华, 张彩英, 等. 植物激素对小麦品质的影响. 河北农业大学学报, 1996, 19(4):93-95.
[35] 文廷刚, 陈昱利, 杜小凤, 等. 不同植物生长调节剂对小麦籽粒灌浆特性及粒重的影响. 麦类作物学报, 2014, 34(1):84-90.
[36] 刘凯. 脱落酸和乙烯对水稻与小麦籽粒灌浆的调控作用及其机理. 扬州: 扬州大学, 2008.
[37] Hussain S. 盐胁迫对水稻植株生长、籽粒发育影响及1-MCP调控作用. 北京: 中国农业科学院, 2018.
[1] Wu Qi, Ming Bo, Gao Shang, Yang Hongye, Zhang Chuan, Chu Zhendong, Li Shaokun. Research on the Construction Strategy of Maize Grain Dehydration Model in Cold Northeast China [J]. Crops, 2023, 39(6): 108-113.
[2] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[3] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
[4] Chen Dan, Xiong Furong, Wu Shaoyun, Bai Xiaodong, Zhou Guoyan, Wu Xiaoyang, Cai Qing. Molecular Detection and Geographic Distribution of Stripe Rust Resistance Gene Loci in Yunnan Wheat Landraces [J]. Crops, 2023, 39(6): 41-46.
[5] Wang Yifan, Ren Ning, Dong Xiangyang, Zhao Yanan, Ye Youliang, Wang Yang, Huang Yufang. Effects of Controlled-Release and Ordinary Urea on Wheat Yield, Nitrogen Absorption and Economic Benefit [J]. Crops, 2023, 39(5): 117-123.
[6] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[7] Ling Yibo, Wang Binjie, Hu Yimin, Heinar·Madithermic mann, Chen Nianlai. Responses of Dry Matter Translocation and Yield Formation to Planting Density and Row Spacing of Sunflower [J]. Crops, 2023, 39(5): 197-203.
[8] Huang Jie, Ge Changbin, Wang Jun, Cao Yanyan, Qiao Jiliang, Liao Pingʼan, Song Danyang, Lu Wenying. Simulation Model of Relative Meteorological 1000-Grain Weight of Wheat of Luohe Based on Principal Component Regression [J]. Crops, 2023, 39(5): 212-218.
[9] Liu Shuhan, Chen Lei, Zhang Jianchao, Hu Gan, Sun Junyan, Liu Dongtao, Wang Junwei. Gene Differential Expression Analysis of TMS5 in the Fertility Conversion of Wheat BNS Sterile Line [J]. Crops, 2023, 39(5): 24-29.
[10] Zhang Dongxu, Hu Danzhu, Yan Jinlong, Feng Liyun, Wu Zhiyuan, Zhang Junling, Li Yanhua. Effects of Spraying Streptomyces on Yield and Photosynthetic Characteristics of Late-Sown Wheat under Different Crop Rotations [J]. Crops, 2023, 39(5): 255-263.
[11] Song Guicheng, Yu Guihong, Zhang Peng, Ma Hongxiang. Evaluation on Waterlogging Resistance of Different Wheat Varieties (Lines) at Jointing Stage [J]. Crops, 2023, 39(5): 30-36.
[12] Ge Changbin, Qin Suyan, Qiao Jiliang, Wang Jun, Qi Shuangli, Lu Wenying, Zhang Zhenyong. Comparative Analysis of Agronomic Traits, Quality and Disease Evolution of Approved Wheat Varieties in Southern Henan and Southern Huai River in Jiangsu from 2001 to 2021 [J]. Crops, 2023, 39(5): 49-58.
[13] Qu Haitao, Li Zhongnan, Wang Yueren, Ma Yiwen, Xiang Yang, Wu Shenghui, Tan Zhuo, Wang Chun, Wei Qiang, Luo Yao, Li Guangfa. Study on Genetic and Breeding Effects of 100-Grain Weight in Maize [J]. Crops, 2023, 39(5): 66-70.
[14] Yang Cheng, Zhang Deqi, Du Simeng, Zhang Lijia, Jin Haiyang, Li Ying, Shao Yunhui, Wang Hanfang, Fang Baoting, Li Xiangdong, Liu Meijun. Effects of Dark and Strong Light Dehydration on the Photosystem Activity in Wheat Leaves in Vitro [J]. Crops, 2023, 39(5): 98-103.
[15] Bian Xiaomeng, Li Huafeng, Chen Yanbin. Overview of the Funding and Implementation for Miscellaneous Grains in “Economic Crops” Special-Purpose Project of the National Key R & D Program during the 13th Five-Year Plan [J]. Crops, 2023, 39(4): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!