Crops ›› 2024, Vol. 40 ›› Issue (2): 189-197.doi: 10.16035/j.issn.1001-7283.2024.02.023

Previous Articles     Next Articles

Effects of Planting Density and Nitrogen Fertilizer Application Rate on Leaf Development and Yield of Flue-Cured Tobacco in Baise Tobacco Region

Xie Mengfan1(), Jia Haijiang2, Qu Yuankai1, Nong Shiying3, Li Junlin3, Wang Jie1, Liu Liwei1, Yan Huifeng1()   

  1. 1Tobacco Research Institute of Chinese Academy of Agricultural Sciences / Key Laboratory of Tobacco Biology and Processing of Ministry of Agriculture and Rural Affairs, Qingdao 266101, Shandong, China
    2China Tobacco Guangxi Industrial Co., Ltd., Nanning 530001, Guangxi, China
    3Baise Branch of Guangxi Tobacco Company, Baise 533000, Guangxi, China
  • Received:2022-11-13 Revised:2022-12-15 Online:2024-04-15 Published:2024-04-15

Abstract:

To clarify the dry matter accumulation, distribution, and the development characteristics of the middle and upper leaves of flue-cured tobacco with different planting densities and N fertilizer application rates, K326 was used as the test material and two-factor randomized group trials were set up with planting densities and N fertilizer application rates. The leaf developmental characteristics affecting dry matter accumulation in flue-cured tobacco populations and individuals was analyzed. The results showed that planting density and N fertilizer application rate had an extremely significant influence on dry matter accumulation of leaves at maturity stage. There were significant interaction effects between planting density and N fertilizer application rate on dry matter accumulation of leaves and whole plant, as well as shoot-root ratio. At budding stage, applying nitrogen increased the leaf mass per area and leaf density of the middle and upper leaves. The effects of planting density on leaf weight and leaf mass per area of middle and upper leaves reached highly significant levels. The correlation between leaf development and dry matter accumulation in flue-cured tobacco showed the leaf thickness of the upper leaves was positively correlated with the dry matter accumulation of the flue-cured tobacco population. In low-density conditions, the proportion of top-quality flue-cured tobacco reached 73.35% at an N fertilizer application rate of 112.5 kg/ha, and the yield, production value, and average price of the same N treatment reached the highest among all treatments under normal planting density (D2). In Baise tobacco area, under the annual tobacco and rice rotation planting mode and the planting density of 1.82×104 plant/ha, the best economic benefit of flue-cured tobacco K326 can be achieved when the amount of base nitrogen fertilizer is 112.5 kg N/ha.

Key words: Nitrogen fertilizer application rate, Planting density, Dry matter accumulation rate, Leaf development characteristics, Yield

Fig.1

Meteorological conditions during tobacco growth period"

Table 1

Effects of planting density and nitrogen fertilizer application rate on individual dry matter weight of flue-cured tobacco"

处理
Treatment
根系(g/株)
Root (g/plant)
茎(g/株)
Stem (g/plant)
叶片
Leaf (g/plant)
整株
Total plant (g)
冠根比
Shoot-root ratio
收获指数
Harvest index
D1 N90 15.82±1.07cd 69.55±1.30d 131.43±3.64d 216.80±4.86e 12.82±0.90ef 0.65±0.00bc
N112.5 14.28±1.00de 75.07±1.43bcd 139.31±7.40cd 228.65±6.68cde 15.12±0.84cd 0.65±0.02bc
N135 18.07±0.45b 82.12±4.56ab 125.88±6.17d 226.07±6.55de 11.53±0.48f 0.60±0.02d
D2 N90 11.55±0.69f 80.96±4.51abc 157.31±3.41b 249.82±3.02b 20.80±1.41a 0.66±0.02bc
N112.5 12.98±0.80ef 79.81±0.89abcd 134.40±1.94d 227.19±2.73cde 16.63±1.03bc 0.63±0.00cd
N135 12.79±0.56ef 78.26±4.32abcd 152.74±3.34bc 243.79±6.11bc 18.09±0.40b 0.66±0.01bc
D3 N90 16.18±0.74c 71.83±4.94cd 155.59±2.56b 243.60±6.45bcd 14.09±0.45de 0.68±0.01ab
N112.5 16.54±0.42bc 74.77±4.47bcd 185.11±7.61a 276.43±12.36a 15.70±0.50cd 0.71±0.00a
N135 22.06±1.16a 87.41±0.86a 177.47±1.20a 286.94±1.16a 12.08±0.67ef 0.67±0.00b
D 39.96** 1.05ns 56.69** 39.07** 38.34** 14.83**
N 14.64** 4.71* 0.90ns 4.51* 5.89* 2.44ns
D×N 4.31* 2.17ns 9.24** 6.31** 5.54** 3.87*

Fig.2

Effects of different planting density and nitrogen fertilizer application rate on dry matter accumulation of flue-cured tobacco population Small letters indicate significant difference at the 5% level of LSD test among different treatments."

Table 2

Effects of planting density and nitrogen fertilizer application rate on the developmental characteristics at the present bud stage and the mature stage in the middle leaves (14th leaf position) of flue-cured tobacco"

生育期Growth stage 处理Treatment LDW (g) LA (cm2) LT (μm) LMA (g/m2) LD (g/cm3)
现蕾期Bud stage D1 N90 6.04±0.10d 830.45±8.53d 276.53±5.85b 72.68±0.71d 0.26±0.01f
N112.5 7.04±0.26c 852.58±9.75bc 244.04±7.57c 82.57±2.23c 0.34±0.00c
N135 9.24±0.25a 857.70±6.73ab 292.25±3.52ab 107.67±2.23a 0.37±0.01ab
D2 N90 5.80±0.16d 821.81±3.44d 273.83±3.72b 70.60±1.66d 0.26±0.01f
N112.5 7.35±0.14c 852.16±1.92bc 292.55±2.61ab 86.25±1.41c 0.29±0.00e
N135 9.03±0.24a 857.41±3.25ab 298.60±8.80a 105.36±2.95a 0.35±0.00bc
D3 N90 7.21±0.12c 838.31±0.67cd 283.25±12.99ab 85.96±1.39c 0.31±0.02de
N112.5 8.24±0.18b 859.15±2.51ab 289.25±3.32ab 95.90±1.79b 0.33±0.00cd
N135 9.28±0.10a 873.28±6.56a 273.14±7.00b 106.30±0.59a 0.39±0.01a
D 20.66** 4.39* 4.85* 22.37** 14.55**
N 183.69** 26.89** 2.83ns 210.69** 81.34**
D×N 4.32* 0.39ns 7.34** 6.96** 2.06ns
成熟期Maturation stage D1 N90 9.50±0.11g 634.32±10.75e 380.40±14.56a 149.91±4.28d 0.39±0.01e
N112.5 10.43±0.17f 665.98±6.37de 370.09±5.60ab 156.55±1.75cd 0.42±0.01e
N135 11.39±0.21e 723.10±26.34ce 321.69±8.06c 157.79±3.26cd 0.49±0.00cd
D2 N90 12.83±0.14d 637.57±5.56e 335.35±26.78bc 201.23±0.47a 0.61±0.05a
N112.5 14.19±0.48c 778.24±11.90c 365.49±7.29ab 182.36±6.43b 0.50±0.02cd
N135 14.31±0.26c 967.51±54.49a 357.56±21.09abc 148.56±5.92d 0.42±0.01e
D3 N90 12.55±0.29d 749.23±12.76c 377.69±4.92a 167.48±1.31c 0.44±0.00de
N112.5 17.14±0.10b 867.88±9.44b 350.42±9.89abc 197.54±2.32a 0.56±0.01ab
N135 19.31±0.18a 985.96±12.65a 381.55±9.58a 195.91±3.11a 0.51±0.02bc
D 447.83** 58.35** 1.22ns 59.03** 11.83**
N 152.46** 73.48** 0.51ns 7.01** 0.85ns
D×N 39.00** 7.66** 3.67* 33.00** 17.24**

Table 3

Effects of planting density and nitrogen fertilizer application rate on the developmental characteristics at the present bud stage and the mature stage in the upper leaves (18th leaf position) of flue-cured tobacco"

生育期Growth stage 处理Treatment LDW (g) LA (cm2) LT (μm) LMA (g/m2) LD (g/cm3)
现蕾期Bud stage D1 N90 4.10±0.19d 490.20±9.05e 265.77±8.32ab 83.62±2.42e 0.32±0.01c
N112.5 5.32±0.19c 523.53±6.05d 260.77±26.14b 101.50±2.39bcd 0.40±0.04ab
N135 6.41±0.24b 594.79±4.35b 290.76±6.24ab 107.73±3.27b 0.37±0.02abc
D2 N90 4.55±0.07d 485.58±2.12e 290.73±5.88ab 93.71±1.52d 0.32±0.01c
N112.5 5.24±0.14c 493.87±4.68e 298.61±8.33a 106.20±3.23bc 0.36±0.02bc
N135 6.64±0.07b 521.39±2.98d 299.07±3.32a 127.37±1.87a 0.43±0.01a
D3 N90 5.22±0.20c 528.22±7.34d 279.12±1.12ab 98.86±3.10cd 0.35±0.01bc
N112.5 6.61±0.09b 551.79±16.34c 293.61±14.65ab 119.93±2.69a 0.41±0.02ab
N135 7.29±0.17a 664.04±3.51a 269.51±5.45ab 109.86±3.06b 0.41±0.02ab
D 39.66** 88.06** 3.39ns 19.06** 1.91ns
N 134.57** 123.60** 0.39ns 59.23** 11.16**
D×N 1.77ns 13.56** 1.47ns 9.09** 1.65ns
成熟期Maturation stage D1 N90 10.40±0.19g 534.92±8.35de 432.30±7.69a 194.43±4.08e 0.45±0.01e
N112.5 11.71±0.27f 551.73±2.70de 402.15±14.13ab 212.34±5.52cd 0.53±0.01de
N135 13.00±0.34e 714.69±7.12b 381.60±9.75bc 181.81±3.25f 0.48±0.02e
D2 N90 13.72±0.31c 528.40±14.76e 336.30±15.90d 259.79±5.92a 0.78±0.04a
N112.5 14.42±0.12c 617.69±6.51c 344.02±16.74cd 233.59±4.19b 0.68±0.03b
N135 15.36±0.06b 814.63±21.33a 399.25±12.74ab 188.87±5.30ef 0.47±0.03e
D3 N90 12.41±0.10e 562.48±5.81d 375.38±13.72bcd 220.70±0.80c 0.59±0.02cd
N112.5 13.71±0.19d 685.12±17.03b 372.54±11.98bcd 200.40±5.54de 0.54±0.02de
N135 17.92±0.08a 711.13±4.32b 400.52±26.69ab 252.02±2.46a 0.64±0.05bc
D 195.39** 21.17** 6.68** 45.52** 22.46**
N 191.24** 244.22** 1.43ns 11.67** 5.28*
D×N 28.73** 20.65** 3.73* 50.43** 13.32**

Table 4

Correlation analysis of developmental characteristics of the middle and upper leaf at the bud and the mature stages of flue-cured tobacco"

叶位
Leaf position
现蕾期Bud stage 成熟期Maturation stage
LDW LA LT LMA LDW LA LT LMA
中部Middle LA 0.84** 0.82**
LT 0.36 0.09 0.07 0.06
LMA 0.99** 0.80** 0.39* 0.67** 0.14 -0.03
LD 0.90** 0.83** -0.06 0.89** 0.47* 0.04 -0.57** 0.83**
上部Upper LA 0.80** 0.64**
LT 0.14 -0.10 -0.21 0.11
LMA 0.84** 0.35 0.32 0.45** -0.39* -0.43*
LD 0.75** 0.41* -0.32 0.80** 0.38 -0.34 -0.79** 0.88**

Table 5

Correlation analysis of dry matter accumulation and development characteristics of flue-cured tobacco leaves"

时期
Stage
中部叶Middle leaves 上部叶Upper leaves
LA LT LMA LD LA LT LMA LD
现蕾期Budding stage
个体Individual 0.317 0.043 0.242 0.258 0.402 0.086 0.439 0.474
群体Population -0.010 -0.557 -0.124 0.083 0.014 -0.389 -0.037 0.174
成熟期Maturity stage
个体Individual 0.609 0.151 0.691* 0.517 0.258 -0.142 0.374 0.292
群体Population -0.187 -0.185 -0.096 0.013 -0.047 0.404 -0.184 -0.285

Table 6

Effects of different planting densities and nitrogen fertilizer amount on main economic traits of flue-cured tobacco"

处理
Treatment
产量
Yield (kg/hm2)
产值(元/hm2
Output value (yuan/hm2)
均价(元/kg)
Average price (yuan/kg)
上等烟比例
Upper smoke ratio (%)
D1 N90 1803.29±41.88 47 113.41±625.25 26.14±0.27 57.43±1.26
N112.5 1933.49±2.28 52 080.62±187.33 26.94±0.08 62.88±0.62
N135 1608.87±26.94 41 720.48±933.98 25.93±0.15 61.31±1.13
D2 N90 1806.15±56.39 48 705.47±1961.10 26.95±0.25 60.50±1.69
N112.5 2230.10±168.95 63 191.13±4262.33 28.37±0.23 66.52±1.97
N135 2021.02±69.29 55 631.32±2237.56 27.52±0.17 63.80±1.55
D3 N90 1929.99±30.50 54 385.50±1589.24 27.22±0.16 58.99±0.72
N112.5 2043.81±70.80 57 764.82±1717.21 28.27±0.24 73.35±1.29
N135 1955.36±38.69 53 232.11±1261.68 27.22±0.15 62.35±0.79
D 9.731** 18.534** 40.491** 8.885**
N 7.792** 14.493** 27.474** 33.346**
D×N 3.003* 3.550* 1.149 5.083**
[1] 田效琴, 李卓, 刘永红. 密度和施氮量对油菜生长发育及产量的影响. 中国土壤与肥料, 2018(3):26-35.
[2] 张江林, 侯文峰, 鲁剑巍, 等. 不同施氮量和移栽密度对水稻产量及灌浆特性的影响. 中国农业科技导报, 2017, 19(2):75-85.
doi: 10.13304/j.nykjdb.2016.320
[3] 刘梦, 梁茜, 葛均筑, 等. 不同密度下施氮量对夏玉米产量和氮肥利用效率的影响. 华北农学报, 2019, 34(6):153-159.
doi: 10.7668/hbnxb.20190333
[4] 蒋鹏, 熊洪, 张林, 等. 不同生态条件下施氮量和移栽密度对杂交稻氮、磷、钾吸收积累的影响. 植物营养与肥料学报, 2017, 23(2):342-350.
[5] 吴子帅, 李虎, 黄秋要, 等. 施氮量和栽插密度对桂育11号产量和稻米品质的影响. 中国农业科技导报, 2021, 23(8):154-162.
[6] 侯云鹏, 孔丽丽, 尹彩侠, 等. 覆膜滴灌下氮肥与种植密度互作对东北春玉米产量、群体养分吸收与转运的调控效应. 植物营养与肥料学报, 2021, 27(1):54-65.
[7] 魏廷邦, 柴强, 王伟民, 等. 水氮耦合及种植密度对绿洲灌区玉米光合作用和干物质积累特征的调控效应. 中国农业科学, 2019, 52(3):428-444.
doi: 10.3864/j.issn.0578-1752.2019.03.004
[8] 盛耀辉, 王庆祥, 齐华, 等. 种植密度和氮肥水平对春玉米产量及氮素效率的影响. 作物杂志, 2010(6):58-61.
[9] 刘继坤. 种植密度对烤烟品种NC55生长发育的影响及机制. 北京: 中国农业科学院, 2018.
[10] 荣凡番, 张忠锋, 张教侠, 等. 不同施氮水平对山东褐土烟田供氮状况及烤烟质量的影响. 中国烟草科学, 2009, 30(2):41-46.
[11] 毕文荣, 吴永明, 刘彦中, 等. 不同种植密度对烤烟产质量及叶绿素含量的影响. 湖南农业大学学报(自然科学版), 2009, 35(增1):1-4.
[12] 李春俭, 张福锁, 李文卿, 等. 我国烤烟生产中的氮素管理及其与烟叶品质的关系. 植物营养与肥料学报, 2007, 13(2):331-337.
[13] 江厚龙, 王瑞, 贾峰, 等. 不同海拔下烤烟叶片全展后光合特性研究. 植物营养与肥料学报, 2013, 19(6):1483-1493.
[14] 郭濛濛. 氮用量及氮磷钾配比对长春晒红烟碳氮代谢及产量和品质的影响. 郑州: 河南农业大学, 2015.
[15] 王玉军, 谢胜利, 邢淑华, 等. 烤烟叶片厚度与主要化学组成相关性研究. 中国烟草科学, 1997(1):12-14.
[16] 何仲秋, 刘洋, 王艺, 等. 缺氮对烤烟叶片性状与叶绿素含量的影响. 安徽农业科学, 2021, 49(10):149-152,185.
[17] 时向东, 朱命阳, 赵会纳, 等. 种植密度对烤烟叶片生育期光合特性的影响. 中国烟草学报, 2012, 18(6):38-42.
[18] 刘继坤, 徐立国, 黄择祥, 等. 密度和施氮量互作对烤烟叶片组织结构的影响. 中国烟草科学, 2018, 39(1):24-31.
[19] 蔡奇. 起垄方式和种植密度对烤烟生长及烟叶产量、质量的影响研究. 长沙: 湖南农业大学, 2009.
[20] 上官克攀, 杨虹琦, 罗桂森, 等. 种植密度对烤烟生长和烟碱含量的影响. 烟草科技, 2003(8):42-45.
[21] 叶卫国, 雷佳, 李淮源, 等. 减氮增密对烤烟光合特性及烟叶结构的影响. 南京农业大学学报, 2018, 41(5):817-824.
[22] 张硕, 沈晗, 裴洲洋, 等. 氮钾肥用量对皖南烤烟生长发育及养分吸收的影响. 华北农学报, 2019, 34(4):167-173.
doi: 10.7668/hbnxb.201751224
[23] 郑小雨, 典瑞丽, 张建鹿, 等. 不同施氮水平对烤烟叶片农艺性状的影响. 湖南文理学院学报(自然科学版), 2019, 31(2):55-59.
[24] 张彩霞. 不同氮素水平下烤烟叶片发育规律研究. 郑州: 河南农业大学, 2009.
[25] 王婵娟. 不同氮水平下烤烟叶片生长发育规律的研究. 郑州: 河南农业大学, 2010.
[26] 孙志伟. 供氮量对烤烟叶片光合特性及光合氮利用效率的影响. 北京: 中国农业科学院, 2020.
[27] 邓小华, 谢鹏飞, 彭新辉, 等. 土壤和气候及其互作对湖南烤烟部分中性挥发性香气物质含量的影响. 应用生态学报, 2010, 21(8):2063-2071.
[28] 晏玲, 刘棋, 封幸兵, 等. 种植密度与施氮量对山地烟生长发育及烟叶品质特征的影响. 云南农业大学学报(自然科学), 2020, 35(5):810-817.
[29] 刘国敏, 邵兰军, 高卫锴, 等. 种植密度和施氮量对烟叶组织结构发育及化学成分的影响. 华北农学报, 2016, 31(4):206-213.
doi: 10.7668/hbnxb.2016.04.032
[30] 国家技术监督局. 烤烟:GB 2635-1992. 北京: 中国标准出版社, 1992.
[31] 纪洪亭, 冯跃华, 范乐乐, 等. 生态及栽培因子对烤烟干物质积累与分配影响的研究进展. 贵州农业科学, 2011, 39(11):64-69.
[32] 张翔, 毛家伟, 黄元炯, 等. 不同施肥处理对烤烟干物质积累与分配的影响. 中国土壤与肥料, 2011(3):31-34,91.
[33] 王军, 田俊岭, 刘兰, 等. 施肥水平对烤烟的干物质、养分积累及分配的影响. 中国农学通报, 2022, 38(22):8-14.
doi: 10.11924/j.issn.1000-6850.casb2021-0632
[34] 刘卫群, 郭群召, 汪庆昌, 等. 不同施氮水平对烤烟干物质、氮素积累分配及产质的影响. 河南农业科学, 2004(8):25-28.
doi: 10.3969/j.issn.1004-3268.2004.08.007
[35] 吴雪. 不同等级烤烟叶片的组织结构比较研究. 作物研究, 2014, 28(2):163-167.
[36] 刘朝营, 许自成, 邵惠芳, 等. 不同成熟度烟叶密集烘烤过程中细胞超微结构的变化. 中国农业科学, 2012, 45(24):4988-4997.
doi: 10.3864/j.issn.0578-1752.2012.24.004
[37] 齐飞, 刘国顺, 史宏志, 等. 移栽期对烤烟化学成分及成熟烟叶组织结构的影响. 中国烟草学报, 2011, 17(3):37-41.
[38] 岳诚, 尹天能, 黄维, 等. 不同施肥处理对K326烟叶组织结构的影响. 中国农学通报, 2018, 34(4):49-54.
doi: 10.11924/j.issn.1000-6850.casb17010083
[39] 智磊, 罗定棋, 熊莹, 等. 施氮量对烤烟叶片组织结构和细胞发育的影响. 烟草科技, 2012(7):81-85.
[1] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
[2] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
[3] Sun Yueying, Liu Jinghui, Mi Junzhen, Zhao Baoping, Li Yinghao, Zhu Shanshan. Study on the Growth-Promoting Effect of Lactic Acid Bacteria Compound Preparation on Oat [J]. Crops, 2024, 40(2): 122-128.
[4] Xu Zheli, Zhu Weiqi, Wang Litao, Shi Feng, Wei Zhiying, Wang Lina, Qiu Hongwei, Zhang Xiaoying, Li Huili. Effects of Irrigation and Foliar Nitrogen Application on Yield, Quality and Photosynthetic Characteristics of Late Sowing Wheat [J]. Crops, 2024, 40(2): 139-147.
[5] Xiao Min, Guo Lang, Cui Can, Cheng Zhouqi, Liu Yuwu, Zhuo Le, Wu Si, Yi Zhenxie. Effects of Phosphate Fertilizer Management on Yield Components and Nutrient Uptake and Utilization in Mechanical Transplanting Double-Cropping Rice [J]. Crops, 2024, 40(2): 178-188.
[6] Wang Huaiping, Yang Mingda, Zhang Suyu, Li Shuai, Guan Xiaokang, Wang Tongchao. Effects of Different Water-Saving Irrigation Modes on Growth, Yield, and Water Utilization of Summer Maize [J]. Crops, 2024, 40(2): 206-212.
[7] Zhang Lei, Dong Kongjun, He Jihong, Ren Ruiyu, Liu Tianpeng, Yang Tianyu. Study on the Difference of Nitrogen and Phosphorus Uptake of Different Genotypes of Proso Millet (Panicum miliaceum L.) Varieties [J]. Crops, 2024, 40(2): 228-233.
[8] Hu Haochi, Wang Fugui, Zhu Kongyan, Hu Shuping, Wang Meng, Wang Zhigang, Sun Jiying, Yu Xiaofang, Bao Haizhu, Gao Julin. Effects of Straw Returning Years and Phosphorus Application on Root Growth and Yield of Maize [J]. Crops, 2024, 40(2): 80-88.
[9] Qin Birong, You Saiya, Chen Shurong, Zhu Lianfeng, Kong Yali, Zhu Chunquan, Tian Wenhao, Zhang Junhua, Jin Qianyu, Cao Xiaochuang, Liu Li. Effects of the Different Nitrogen Levels on Yield, Nitrogen Utilization Efficiency and the Nitrogen Balance of Double-Cropping Rice in Paddy Field [J]. Crops, 2024, 40(2): 89-96.
[10] Luo Xiaoying, Fang Yanfei, Hu Dongping, Tang Jianghua, Xu Wenxiu, Wang Huaigang. Effects of Sowing Methods and Sowing Rates on Soil Water Use and Yield of Dryland Wheat in Arid Region [J]. Crops, 2024, 40(2): 97-104.
[11] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[12] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[13] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[14] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[15] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!