Crops ›› 2024, Vol. 40 ›› Issue (2): 97-104.doi: 10.16035/j.issn.1001-7283.2024.02.012

Previous Articles     Next Articles

Effects of Sowing Methods and Sowing Rates on Soil Water Use and Yield of Dryland Wheat in Arid Region

Luo Xiaoying(), Fang Yanfei, Hu Dongping, Tang Jianghua, Xu Wenxiu(), Wang Huaigang   

  1. College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2023-02-17 Revised:2023-03-30 Online:2024-04-15 Published:2024-04-15

Abstract:

In order to clarify the effects of sowing methods and sowing rates on soil water storage and yield of dryland wheat, in the main area of sowing method, drilling (C1), ridging and furrowing (C2), wide sowing (C3) were set up. The sowing rate was sub area, with four treatments of 180 (D1), 240 (D2), 300 (D3) and 360 (D4) kg/ha. The difference of soil water storage, WUE and yield of dryland wheat were studied. The results showed that under the same sowing method, the sowing rate of 240 and 300 kg/ha increased soil water storage at jointing and flowering stages, soil water consumption at flowering-maturity stages, WUE, yield and its components increased. And there was no significant difference between the two treatments. Compared with conventional drilling, especially wide sowing, wide sowing and furrowing increased average soil water storage at jointing and flowering stages, water consumption and its proportion at flowering-maturity stages, improved average WUE and yield. Wide sowing increased average WUE by 23% and 3%, yield average by 25% and 3%, respectively, compared with drilling and furrowing. In arid region, the combination of wide sowing and sowing rate in 240-300 kg/ha were beneficial to the accumulation of soil water during the vegetative growth period of wheat, increasing soil water consumption after flowering, and increasing spike number and yield.

Key words: Dryland wheat, Wide sowing, Ridging and furrowing, Sowing rate, Soil water use, Yield

Fig.1

Monthly precipitation from 2021 to 2022 during wheat growth stage"

Table 1

Changes of 0-80 cm soil water storage at different growth stages of dryland wheat under different treatments mm"

播种方式
Sowing
method
播量
Sowing
rate
拔节期
Jointing
开花期
Anthesis
灌浆期
Filling
成熟期
Maturity
C1 D1 146.98e 108.84f 92.46ab 84.40ab
D2 156.19d 128.30e 88.43bcd 81.72abcde
D3 148.37e 125.02e 91.67abc 83.11abc
D4 143.28e 106.50f 93.30a 85.60a
均值 148.71B 117.17C 91.47A 83.71A
C2 D1 166.98bc 138.55bcd 90.78abc 82.57abcd
D2 169.66abc 141.86abc 87.06cd 79.46cde
D3 167.41bc 140.20abc 88.92abcd 81.79abcde
D4 165.06c 134.30d 92.17ab 83.35abc
均值 167.28A 138.73B 89.73A 81.79A
C3 D1 167.76abc 140.86abc 88.11bcd 80.53bcde
D2 171.13ab 142.83ab 86.91cd 78.17de
D3 172.92a 145.91a 84.77d 77.00e
D4 166.48bc 136.15cd 90.31abc 81.55abcde
均值 169.57A 141.44A 87.53B 79.31B
F
F-value
C 88.28** 30.45** 10.98** 29.01**
D 5.06* 4.46 8.45* 12.93**
C×D 2.41 7.93** 0.76 0.34

Fig.2

Contour map of spatial distribution of soil water storage in different soil layers at different growth stages JS: jointing stage, AS: anthesis stage, FS: filling stage, MS: maturity stage."

Table 2

Changes of soil water consumption and its ratio during different growth periods"

播种方式
Sowing
method
播量
Sowing
rate
播种期-拔节期Sowing-jointing 拔节期-开花期Jointing-anthesis 开花期-成熟期Anthesis-maturity
耗水量
Water
consumption (mm)
占总耗水量比例
Proportion in total
water consumption (%)
耗水量
Water
consumption (mm)
占总耗水量比例
Proportion in total
water consumption (%)
耗水量
Water
consumption (mm)
占总耗水量比例
Proportion in total
water consumption (%)
C1 D1 161.84ab 64.97ab 49.14a 19.72a 37.94h 15.23e
D2 152.63c 60.61c 38.90bc 15.45c 60.08f 23.86cd
D3 160.45b 64.07b 34.35c 13.72c 55.41g 22.13d
D4 165.54a 66.77a 47.77a 19.27ab 34.41h 13.88e
均值 160.12A 64.11A 42.54A 17.04A 46.96C 18.78B
C2 D1 141.84de 56.52de 39.43bc 15.71bc 69.48d 27.69abc
D2 139.16def 54.77def 38.81bc 15.27c 75.89bc 29.87ab
D3 141.41de 56.18de 38.21bc 15.18c 71.91cd 28.57ab
D4 143.76d 57.47d 41.75b 16.69abc 64.45ef 25.76bcd
均值 141.54B 56.24B 39.55B 15.71A 70.43B 27.97A
C3 D1 141.06de 55.76de 37.89bc 14.98c 73.83bcd 29.18ab
D2 137.69ef 53.92ef 39.30bc 15.39c 78.16ab 30.61a
D3 135.90f 52.98f 38.01bc 14.82c 82.41a 32.13a
D4 142.34de 56.49de 41.34b 16.41abc 68.09de 27.02abc
均值 139.25C 54.79C 39.14B 15.40A 75.62A 29.74A
F
F-value
C 88.28** 83.78** 1.01 1.39 33.74** 33.43**
D 5.06* 6.80* 2.04 2.38 6.21* 5.69*
C×D 3.19* 1.87 5.68** 1.88 11.96** 2.61

Table 3

Effects of sowing methods and sowing rates on water use efficiency of dryland wheat"

播种方式
Sowing
method
播量
Sowing
rate
水分利用效率
WUE
[kg/(mm·hm2)]
降水生产效率
RUE
[kg/(mm·hm2)]
总耗水量
Total soil water
consumption
(mm)
C1 D1 9.64d 10.05d 249.12ef
D2 10.72bcd 11.29bcd 251.80bcde
D3 10.02cd 10.49cd 250.41cdef
D4 9.65d 10.01d 247.92f
均值 10.01B 10.46B 249.81C
C2 D1 11.81abc 12.39abc 250.95cdef
D2 12.64a 13.43a 254.06abc
D3 12.01ab 12.64ab 251.73bcde
D4 11.48abc 12.01abc 250.17def
均值 11.99A 12.62A 251.73B
C3 D1 11.97abc 12.47ab 252.99abcd
D2 12.64a 13.50a 255.35ab
D3 12.98a 13.92a 256.52a
D4 11.62abc 12.25abc 251.97bcde
均值 12.30A 13.04A 254.21A
F
F-value
C 75.79** 65.75** 29.01**
D 9.67** 9.74** 12.93**
C×D 0.29 0.37 0.55

Table 4

Effects of sowing method and sowing rate on yield and its components of dryland wheat"

播种方式
Sowing method
播量
Sowing rate
有效穗数
Spike number (×104/hm2)
穗粒数
Grain number per spike
穗粒重
Grain weight per spike (g)
产量
Yield (kg/hm2)
C1 D1 217.50e 36.85cd 1.08abc 2402.60g
D2 278.34cd 39.20abcd 1.16ab 2699.43ef
D3 274.17cd 37.15cd 0.97bc 2508.75fg
D4 246.67de 32.70e 0.87c 2393.46g
均值 254.17C 36.48B 1.02B 2501.06B
C2 D1 275.00cd 37.64bcd 1.15abc 2963.46d
D2 311.67abc 41.00abc 1.21ab 3210.53abc
D3 278.34cd 37.90bcd 1.07abc 3022.59bcd
D4 277.50cd 35.30de 1.02abc 2871.81de
均值 285.63B 37.96B 1.11AB 3017.10A
C3 D1 308.62bc 40.32abc 1.19ab 2982.51cd
D2 317.24abc 41.68ab 1.23ab 3227.28ab
D3 353.45a 43.40a 1.30a 3329.43a
D4 329.31ab 38.88bcd 1.07abc 2927.92de
均值 327.16A 41.07A 1.20A 3116.79A
FF-value C 17.11** 15.57** 7.22* 65.77**
D 2.72 9.78** 5.64* 9.73**
C×D 1.89 0.91 0.56 1.29
[1] 徐文修. 新疆旱作农业区生产现状及节水措施. 甘肃农业科技, 1998(4):22-24.
[2] 黄秉信. 中国农村统计年鉴. 北京: 中国统计出版社, 2018:50.
[3] 徐文修, 陈敬锋, 克尤木. 旱作春小麦播种量与施肥量的合理配置研究. 新疆农业大学学报, 2002, 25(1):9-11.
[4] 杨清山. 播种方式和播量对旱地小麦产量及品质形成的影响. 晋中: 山西农业大学, 2019.
[5] 孙允超, 彭科研, 冯盛烨, 等. 宽幅精播中行距与幅宽对小麦干物质积累与分配的影响. 作物杂志, 2022(5):130-134.
[6] 柴守玺, 杨长刚, 张淑芳, 等. 不同覆膜方式对旱地冬小麦土壤水分和产量的影响. 作物学报, 2015, 41(5):787-796.
[7] 李廷亮, 谢英荷, 任苗苗, 等. 施肥和覆膜垄沟种植对旱地小麦产量及水氮利用的影响. 生态学报, 2011, 31(1):212-220.
[8] 杨中帅, 吴金芝, 黄明, 等. 垄沟种植及其施肥优化对旱地小麦产量和水肥利用效率的影响. 华北农学报, 2021, 36(5):157-166.
doi: 10.7668/hbnxb.20192122
[9] 王志鑫, 孙敏, 任爱霞, 等. 施氮量对干旱年探墒沟播旱地小麦土壤水分利用和产量的影响. 生态学杂志, 2021, 40(11):3598-3607.
[10] 段剑钊, 李世莹, 郭彬彬, 等. 宽幅播种对冬小麦群体质量及产量的影响. 核农学报, 2015, 29(10):2013-2019.
doi: 10.11869/j.issn.100-8551.2015.10.2013
[11] 赵庆玲, 孙敏, 林文, 等. 播种方式对旱地小麦土壤水分变化和籽粒蛋白质形成的影响. 应用生态学报, 2021, 32(11):3977-3987.
doi: 10.13287/j.1001-9332.202111.030
[12] 初金鹏, 朱文美, 尹立俊, 等. 宽幅播种对冬小麦‘泰农18’产量和氮素利用率的影响. 应用生态学报, 2018, 29(8):2517-2524.
doi: 10.13287/j.1001-9332.201808.027
[13] 赵刚, 樊廷录, 李兴茂, 等. 宽幅播种旱作冬小麦幅间距与基因型对产量和水分利用效率的影响. 中国农业科学, 2020, 53(11):2171-2181.
doi: 10.3864/j.issn.0578-1752.2020.11.004
[14] 薛玲珠, 孙敏, 高志强, 等. 播期播量对旱地小麦土壤水分、干物质积累及产量的影响. 山西农业大学学报(自然科学版), 2017, 37(8):547-552,556.
[15] 杨磊, 孙敏, 林文, 等. 群体结构对旱地小麦土壤耗水与物质生产形成的影响. 生态学杂志, 2021, 40(5):1356-1365.
[16] 郝瑞煊, 孙敏, 任爱霞, 等. 宽幅条播冬小麦水分利用与干物质积累、品质的关系及播种密度的调控研究. 作物杂志, 2022(2):119-126.
[17] 张廷龙, 陈建平, 陈桂平, 等. 春小麦耗水特征对播种方式及播种量的响应. 灌溉排水学报, 2021, 40(9):11-16.
[18] 尹璐, 高志强, 孙敏, 等. 膜际条播和播量对旱地冬小麦土壤水分及产量的影响. 山西农业大学学报(自然科学版), 2019, 39(6):19-25.
[19] 徐文修, 石书兵, 聂文魁. 木垒县旱作春小麦丰产栽培综合农艺措施研究. 甘肃农业科技, 2001(1):25-26.
[20] 徐文修, 石书兵, 高文伟, 等. 新疆山旱地地膜小麦研究初报. 新疆农业科技, 1999(6):11-12.
[21] 陈传信, 赛力汗·赛, 张永强, 等. 耕作方式对伊犁河谷旱地农田土壤物理性质和小麦产量的影响. 中国农学通报, 2020, 36(8):17-20.
doi: 10.11924/j.issn.1000-6850.casb19040024
[22] 陈传信, 赛力汗·赛, 张永强, 等. 伊犁河谷雨养旱地栗钙土不同产量小麦土壤肥力差异分析. 山西农业科学, 2020, 48 (1):76-80.
[23] 李俊红, 姚宇卿, 丁志强, 等. 沟播对冬小麦群体干物质、土壤水分利用效率及土壤温度的影. 作物研究, 2010, 24(1):16-18.
[24] 刘晓伟, 何宝林, 康恩祥, 等. 播种方式对旱区冬小麦产量及土壤水分、土壤温度的影响. 作物杂志, 2011(5):77-81.
[25] Wang Z X, Khan S, Sun M, et al. Optimizing the wheat seeding rate for wide space sowing to improve yield and water and nitrogen utilization. International Journal of Plant Production, 2021, 15:553-562.
doi: 10.1007/s42106-021-00155-3
[26] 张廷龙, 陈建平, 陈桂平, 等. 春小麦耗水特征对播种方式及播种量的响应. 灌溉排水学报, 2021, 40(9):11-16.
[27] 冯伟, 李世莹, 王永华, 等. 宽幅播种下带间距对冬小麦衰老进程及产量的影响. 生态学报, 2015, 35(8):2686-2694.
[28] 祁皓天, 董永利, 李川, 等. 播种方式和播量对冬小麦“西农20”产量及品质的影响. 西北农业学报, 2021, 30(1):1-9.
[29] 郑飞娜, 初金鹏, 张秀, 等. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应. 作物学报, 2020, 46(3):423-431.
doi: 10.3724/SP.J.1006.2020.91046
[30] 石玉华, 初金鹏, 尹立俊, 等. 宽幅播种提高不同播期小麦产量与氮素利用率. 农业工程学报, 2018, 34(17):127-133.
[31] Ren Y J, Gao C, Yan Z X, et al. Effects of planting systems and straw mulching on carbon emissions and winter wheat grain yield in the north China plain. Experimental Agriculture, 2018, 54(4):520-530.
doi: 10.1017/S0014479717000217
[32] 温健, 赵贵宾, 马彦, 等. 肥密互作对宽幅匀播旱地冬小麦产量、品质及水分利用效率的影响. 节水灌溉, 2020(5):77-82.
[1] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
[2] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
[3] Sun Yueying, Liu Jinghui, Mi Junzhen, Zhao Baoping, Li Yinghao, Zhu Shanshan. Study on the Growth-Promoting Effect of Lactic Acid Bacteria Compound Preparation on Oat [J]. Crops, 2024, 40(2): 122-128.
[4] Xu Zheli, Zhu Weiqi, Wang Litao, Shi Feng, Wei Zhiying, Wang Lina, Qiu Hongwei, Zhang Xiaoying, Li Huili. Effects of Irrigation and Foliar Nitrogen Application on Yield, Quality and Photosynthetic Characteristics of Late Sowing Wheat [J]. Crops, 2024, 40(2): 139-147.
[5] Xiao Min, Guo Lang, Cui Can, Cheng Zhouqi, Liu Yuwu, Zhuo Le, Wu Si, Yi Zhenxie. Effects of Phosphate Fertilizer Management on Yield Components and Nutrient Uptake and Utilization in Mechanical Transplanting Double-Cropping Rice [J]. Crops, 2024, 40(2): 178-188.
[6] Xie Mengfan, Jia Haijiang, Qu Yuankai, Nong Shiying, Li Junlin, Wang Jie, Liu Liwei, Yan Huifeng. Effects of Planting Density and Nitrogen Fertilizer Application Rate on Leaf Development and Yield of Flue-Cured Tobacco in Baise Tobacco Region [J]. Crops, 2024, 40(2): 189-197.
[7] Wang Huaiping, Yang Mingda, Zhang Suyu, Li Shuai, Guan Xiaokang, Wang Tongchao. Effects of Different Water-Saving Irrigation Modes on Growth, Yield, and Water Utilization of Summer Maize [J]. Crops, 2024, 40(2): 206-212.
[8] Zhang Lei, Dong Kongjun, He Jihong, Ren Ruiyu, Liu Tianpeng, Yang Tianyu. Study on the Difference of Nitrogen and Phosphorus Uptake of Different Genotypes of Proso Millet (Panicum miliaceum L.) Varieties [J]. Crops, 2024, 40(2): 228-233.
[9] Hu Haochi, Wang Fugui, Zhu Kongyan, Hu Shuping, Wang Meng, Wang Zhigang, Sun Jiying, Yu Xiaofang, Bao Haizhu, Gao Julin. Effects of Straw Returning Years and Phosphorus Application on Root Growth and Yield of Maize [J]. Crops, 2024, 40(2): 80-88.
[10] Qin Birong, You Saiya, Chen Shurong, Zhu Lianfeng, Kong Yali, Zhu Chunquan, Tian Wenhao, Zhang Junhua, Jin Qianyu, Cao Xiaochuang, Liu Li. Effects of the Different Nitrogen Levels on Yield, Nitrogen Utilization Efficiency and the Nitrogen Balance of Double-Cropping Rice in Paddy Field [J]. Crops, 2024, 40(2): 89-96.
[11] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[12] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[13] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[14] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[15] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!