Crops ›› 2024, Vol. 40 ›› Issue (5): 204-211.doi: 10.16035/j.issn.1001-7283.2024.05.029

Previous Articles     Next Articles

Effects of Drought Stress and Rehydration on Growth, Physiological Characteristics and Accumulation of Secondary Metabolites in Astragalus Mongholicus Seedlings

Zhang Xuli(), Wang Ruijun, Xi Xiaoqian, Feng Xuejin, Li Hong()   

  1. High Cold Area Crop Research Institute, Shanxi Agricultural University, Datong 037000, Shanxi, China
  • Received:2023-10-17 Revised:2024-02-06 Online:2024-10-15 Published:2024-10-16

Abstract:

In order to clarify the response mechanism of Astragalus seedlings to drought stress with different water deficit degree, the effects of different drought stress degree, stress duration and rewatering on the growth, physiological characteristics and secondary metabolites accumulation of Astragalus seedlings were studied using Tongqi 16-1 seedling as experimental material. The results showed that mild drought stress treatment and moderate drought stress treatment for four, eight days showed a gradually decreasing trend in the plant height, aboveground biomass, chlorophyll content, and net photosynthetic rate of Astragalus seedlings with the deepening of stress degree and prolongation of stress time. The root length, underground biomass, the activities of superoxide dismutase and peroxidase, the content of malondialdehyde (MDA) and proline (Pro) gradually increased, and a large accumulation of secondary metabolites in the roots was observed. After 12 days of moderate drought stress, the accumulation of secondary metabolites decreased significantly, and the change trend of other indexes were basically the same as that of four and eight days of moderate drought stress. Under severe drought stress, the contents of MDA and Pro in Astragalus seedlings continued to increase, while the other indexes decreased gradually. After rehydration, the indexes of mild and moderate stress were basically restored to the control level, while those under severe stress could not recover completely and there were significant differences between the seedlings and the control group after long treatment. The results showed that Tongqi 16-1 seedlings had certain drought resistance, according to the comprehensive analysis of seedling growth, physiological and biochemical indicators, the relative water content of soil water that did not affect the growth and development of seedlings was 50%-60%, and the stress duration was no more than eight days.

Key words: Astragalus mongholicus, Drought stress, Rehydration, Seedling growth, Physiological characteristics, Secondary metabolites

Fig.1

Effects of drought and rehydration treatment on plant height, root length, aboveground and underground biomass of Astragalus seedling in 2021 4, 8 and 12 represent short duration, medium duration and long duration, respectively; P, D and R represent pre stress, drought stress and post rehydration, respectively. Different lowercase letters indicate that the difference among different treatments of the same factor reach a significant level (P < 5%). The same below."

Table 1

Effects of drought and rehydration treatment on aboveground and underground biomass of Astragalus seedling in 2022"

指标
Index
处理
Treatment
4P 4D 4R 8P 8D 8R 12P 12D 12R
地上部
生物量
Aboveground
biomass
CK 0.100±0.003a 0.122±0.004a 0.212±0.005a 0.100±0.006a 0.148±0.005a 0.256±0.003a 0.098±0.005a 0.181±0.007a 0.299±0.006a
LS 0.098±0.002a 0.116±0.003a 0.205±0.002a 0.098±0.003a 0.142±0.003a 0.251±0.004a 0.100±0.005a 0.145±0.003b 0.290±0.005a
MS 0.098±0.004a 0.117±0.002a 0.205±0.002a 0.097±0.004a 0.128±0.004b 0.244±0.003a 0.100±0.003a 0.136±0.003c 0.284±0.003a
SS 0.097±0.002a 0.102±0.002b 0.202±0.001a 0.118±0.002a 0.114±0.004c 0.200±0.004b 0.098±0.002a 0.113±0.004c 0.192±0.004b
地下部
生物量
Underground
biomass
CK 0.029±0.002a 0.030±0.001b 0.063±0.001a 0.027±0.002a 0.037±0.003b 0.072±0.001a 0.030±0.001a 0.047±0.001c 0.094±0.001a
LS 0.027±0.001a 0.036±0.002a 0.066±0.001a 0.030±0.003a 0.054±0.004a 0.073±0.002a 0.028±0.002a 0.067±0.002a 0.093±0.002a
MS 0.030±0.002a 0.037±0.003a 0.065±0.002a 0.031±0.001a 0.052±0.001a 0.074±0.001a 0.031±0.002a 0.051±0.002b 0.103±0.003a
SS 0.029±0.001a 0.023±0.002c 0.063±0.003a 0.029±0.003a 0.021±0.003c 0.064±0.002b 0.029±0.001a 0.019±0.001d 0.077±0.002b

Fig.2

Effects of drought and rehydration treatment on chlorophyll content and Pn in leaves of Astragalus seedling"

Fig.3

Effects of drought and rehydration treatments on SOD, POD and CAT activities in leaves of Astragalus seedling"

Fig.4

Effects of drought and rehydration treatments on MDA and Pro contents in leaves of Astragalus seedling"

Fig.5

Effects of drought and rehydration treatments on calycosin-7-oB-D-gluoside and astragaloside IV contents in roots of Astragalus seedling in 2021"

Table 2

Effects of drought and rehydration treatments on calycosin-7-oB-D-gluoside and astragaloside IV contents in roots of Astragalus seedling in 2022 %"

处理
Treatment
毛蕊异黄酮葡萄糖苷Calycosin-7-oB-D-glucoside 黄芪甲苷Astragaloside IV
CK LS MS SS CK LS MS SS
4P 0.0148±0.0003a 0.0149±0.0004a 0.0148±0.0004a 0.0147±0.0003a 0.0611±0.0020a 0.0600±0.0016a 0.0597±0.0015a 0.0603±0.0011a
4D 0.0149±0.0004a 0.0150±0.0008a 0.0200±0.0009a 0.0135±0.0004a 0.0614±0.0018a 0.0733±0.0019a 0.0851±0.0028a 0.0581±0.0040a
4R 0.0147±0.0002a 0.0150±0.0002a 0.0153±0.0008a 0.0145±0.0001a 0.0630±0.0023a 0.0625±0.0017a 0.0637±0.0024a 0.0598±0.0027a
8P 0.0419±0.0003b 0.0148±0.0003a 0.0147±0.0002a 0.0147±0.0005a 0.0612±0.0018a 0.0601±0.0017a 0.0596±0.0011a 0.0598±0.0009a
8D 0.1470±0.0005b 0.0190±0.0007a 0.0179±0.0004a 0.0115±0.0007c 0.0615±0.0014b 0.0781±0.0025a 0.0742±0.0026a 0.0531±0.0026c
8R 0.0147±0.0003a 0.0151±0.0004a 0.0152±0.0004a 0.0131±0.0004b 0.0631±0.0023a 0.0652±0.0017a 0.0635±0.0020a 0.0584±0.0012b
12P 0.0148±0.0005a 0.0148±0.0002a 0.0147±0.0001a 0.0149±0.0005a 0.0612±0.0015a 0.0601±0.0017a 0.0596±0.0016a 0.0601±0.0009a
12D 0.0149±0.0004b 0.0215±0.0010a 0.0141±0.0003b 0.1080±0.0003c 0.0618±0.0013b 0.0862±0.0031a 0.0592±0.0035b 0.0502±0.0025c
12R 0.1490±0.0004a 0.1550±0.0010a 0.1470±0.0005a 0.1230±0.0004b 0.0631±0.0016a 0.0651±0.0008a 0.0611±0.0012a 0.0542±0.0015b
[1] 刘乔斐. 干旱胁迫与复水对北柴胡生长和根部次生代谢物含量的影响. 上海农业学报, 2022, 38(3):42-47.
[2] 丁红, 张智猛, 戴良香, 等. 干旱胁迫对花生根系生长发育和生理特性的影响. 应用生态学报, 2013, 24(6):1586-1592.
[3] 孙淑英, 陈贵林. 干旱胁迫对蒙古黄芪生殖生长及活性成分的影响. 分子植物育种, 2019, 17(22):7559-7565.
[4] 贾鑫, 孙窗舒, 李光跃, 等. 干旱胁迫对蒙古黄芪生长和生理生化指标及其黄芪甲苷积累的影响. 西北植物学报, 2018, 38(3):501-509.
[5] 贾鑫. 蒙古黄芪对干旱胁迫的响应及分子应答机制研究. 呼和浩特: 内蒙古大学 2016.
[6] 张倩倩, 李光跃, 苏优拉, 等. 干旱胁迫对蒙古黄芪和膜荚黄芪不同器官黄酮类成分积累的影响. 西北植物学报, 2020, 40(7):1201-1208.
[7] 曹昌林, 白文斌, 张建华, 等. 高粱应答水分胁迫的生理响应及产量性状表达. 农学学报, 2016, 6(8):4-11.
doi: 10.11923/j.issn.2095-4050.cjas16020005
[8] 李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[9] 国家药典委员会. 中华人民共和国药典(2020年版):一部. 北京: 中国医药科技出版社, 2020.
[10] 邹春静, 韩士杰, 徐文铎, 等. 沙地云杉生态型对干旱胁迫的生理生态响应. 应用生态学报, 2003, 14(9):1446-1550.
[11] 罗杰, 周光良, 胡庭兴, 等. 干旱胁迫对润楠幼苗生长和生理生化指标的影响. 应用与环境生物学报, 2015, 21(3):563-570.
[12] 王洋, 于森淼, 王旌扬, 等. 干旱胁迫和复水对萱草的生理特性的影响. 中国农学通报, 2023, 39(19):58-64.
doi: 10.11924/j.issn.1000-6850.casb2022-0394
[13] 吕文河, 李志燕, 雷雪萍, 等. 离体条件下PEG-6000胁迫对马铃薯组培苗影响. 东北农业大学学报, 2015, 46(10):1-9.
[14] 刘文瑜, 杨发荣, 黄杰, 等. 干旱胁迫对藜麦幼苗生长和叶绿素荧光特性的影响. 干旱地区农业研究, 2019, 37(4):172-177.
[15] 王晓飞, 魏国江, 关向军, 等. 密度与环境因子对蒙古黄芪育苗影响研究. 中国农学通报, 2020, 36(15):43-47.
doi: 10.11924/j.issn.1000-6850.casb19020050
[16] 廖亮, 吴家胜, 吴江, 等. 干旱胁迫对桂花幼苗生长及生理生化特性的影响. 西部林业科学, 2018, 47(2):54-58.
[17] 黄璐琦, 郭兰萍. 环境胁迫下次生代谢产物的积累及道地药材的形成. 中国中药杂志, 2007, 32(4):277-280.
[18] 梁建萍, 贾小云, 刘亚令, 等. 干旱胁迫对蒙古黄芪生长及根部次生代谢物含量的影响. 生态学报, 2016, 36(14):4415-4422.
[19] 胡娅婷, 徐志超, 田亚, 等. 大田不同水分条件对蒙古黄芪生长及品质的影响. 世界中医药, 2020, 15(9):1285-1290.
[20] Ryo N, Keiko Y S, Kaoru U, et al. Enhancement of oxidative and drought in Arabidopsis by overaccumulation of antioxidant flavonoids. The Plant Journal, 2014, 77(3):367-379.
[1] Xiao Xiao, Zhong Kunquan, Tu Xiaoju, Yi Zhenxie. Effects of Low Temperature Acclimation Duration on Cold Tolerance Physiological Characteristics in Vegetable Sweet Potato Seedlings [J]. Crops, 2024, 40(5): 140-145.
[2] Du Jie, Feng Yu, Xia Qing, Zhi Hui, Wang Wenxia. Mechanism of Exogenous Brassinolide in Alleviating Drought Stress Injury at Panicle Differentiation Stage in Foxtail Millet [J]. Crops, 2024, 40(4): 144-151.
[3] Wang Fugui, Zou Runhou, Gao Julin, Wang Zhen, Cheng Zhipeng, Hao Qi, Zhang Yuezhong, Wang Zhigang. Effects of Straw Returning Methods on Soil Water and Heat and Seedling Growth and Yield of Spring Maize in Eastern Region of Inner Mongolia [J]. Crops, 2024, 40(4): 223-231.
[4] Zhang Ziyi, Wang Xuehu, Yuan Ying, Shen Zhifeng. Effects of Humic Acid Suspension Agent on Seed Germination and Seedling Growth of Wheat under NaCl Stress [J]. Crops, 2024, 40(4): 263-268.
[5] Xue Xinyu, Zhan Wenbo, Chen Xinyi, Zhou Ruixiang, Wang Yongxia, Xue Ruili, Li Hua, Wang Yuexia, Li Yan. Effects of Drought Stress during Grain Filling Period on Physiological and Root Characteristics of Different Wheat Cultivars [J]. Crops, 2024, 40(3): 192-200.
[6] Qing Chen, Liu Zhengxue, Li Yanjie. Effects of Compound Microbial Fertilizer on Drought Resistance of Maize Seedlings under Drought Stress by Transcriptome Analysis [J]. Crops, 2024, 40(3): 32-39.
[7] He Jiamin, Zhang Yongqing, Zhang Meng, Liang Ping, Wang Dan, Yan Fanfan. Effects of Seed Soaking with Uniconazole on Agronomic and Physiological Characteristics of Quinoa under Saline-Alkali Stress [J]. Crops, 2024, 40(2): 234-241.
[8] Zhang Yu, Yang Wenjing, Liu Xuan, Nie Fengjie, Zhang Li, Shi Lei, Zhang Guohui, Guo Zhiqian, Gong Lei. Cloning and Expression Analysis of Potato StCWIN1 Gene Promoter and Its Role under Drought Stress [J]. Crops, 2024, 40(2): 54-61.
[9] Xiu Junjie, Liu Xueliang. Effects of Water and Nitrogen Interaction on Physiological Characteristics and Growth of Peanut during the Pod-Pin Stage [J]. Crops, 2023, 39(6): 174-180.
[10] Jiang Shan, Liu Jia, Cao Liang, Ren Chunyuan, Jin Xijun, Zhang Yuxian. Effects of Exogenous Melatonin on Growth and Yield of Adzuki Bean under Drought Stress at Seedling Stage [J]. Crops, 2023, 39(4): 202-209.
[11] Shan Jiaye, Zhang Xuewei, Yan Min, Yang Jian, Wang Fei, He Jixian, Hu Gang, Wang Yuchen, Jing Yanqiu, Lei Qiang. Effects of Spraying Rare Earth Micro-Fertilizer on Growth and Physiological Characteristics of Flue-Cured Tobacco under Drought Stress [J]. Crops, 2023, 39(2): 100-105.
[12] Niu Hanhui, Wei Xiaokai, Yu Shikang, Gu Huizhan, He Jixian, Zhang Qili, Li Junju, Jing Yanqiu, Lei Qiang. Effects of Exogenous Salicylic Acid on Physiological Characteristics of Flue-Cured Tobacco Seedlings under Low Temperature Stress [J]. Crops, 2023, 39(2): 151-156.
[13] Chen Dong, Zou Jing, Guo Ganggang, Dai Wendian, Song Shaoguang, Huang Ying. Effects of Different Specifications of Seedling Trays on Quality and Main Physiological Characteristics of Tobacco Seedlings [J]. Crops, 2023, 39(1): 129-135.
[14] Zhang Lixia, Guo Xiaoyan, Shi Pengfei, Nie Liangpeng, Ling Jingwei, Shen Peilin, Ding Li, Zhang Lin, Lü Yuhu, Pan Ziliang. Effects of Drought Stress on Growth, Yield and Benefits of Kenaf in Vigorous Growing Period [J]. Crops, 2023, 39(1): 184-189.
[15] Zhang Panpan, Wu Xiong, Ji Jiangtao, Wang Xiaolin. Effects of EDTA on Growth and Physiological Characteristics of Cucumber Seedlings under Chromium Stress [J]. Crops, 2023, 39(1): 196-200.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!