Crops ›› 2024, Vol. 40 ›› Issue (5): 212-219.doi: 10.16035/j.issn.1001-7283.2024.05.030

Previous Articles     Next Articles

Effects of Nitrogen Fertilizer and Biochar Application Rate Interaction on Growth and Root-Knot Nematode Disease of Greenhouse Tomatoes

Zhou Qi(), Wu Fang, Wang Zhenlong, Xu Zhipeng, Deng Chaochao, Shi Zhiguo, Zhang Jing, Su Cuicui, Yu Yalin, Zhou Yanfang()   

  1. Gansu Academy of Agri-Engineering Technology, Lanzhou 730000, Gansu, China
  • Received:2024-03-27 Revised:2024-06-20 Online:2024-10-15 Published:2024-10-16

Abstract:

To explore the effects of combined application of nitrogen fertilizer and biochar interaction on tomato growth and root-knot nematode disease, a suitable nitrogen fertilizer application rates and biochar application rates were screened. A two-factor three-level randomized block pot experiment design was adopted to study three nitrogen application rates (N1: 0 mg/kg soil, N2: 200 mg/kg soil, N3: 400 mg/kg soil) and three biochar application rates (C1: 0 g/kg soil, C2: 2 g/kg soil, C3: 4 g/kg soil) were used this study. The effects of different treatments on tomato growth, yield, quality, photosynthetic characteristics and root-knot nematode indicators were analyzed under different combinations of treatments. The results showed that the effects of nitrogen fertilizer, biochar and their interaction on tomato growth, yield and quality, photosynthetic characteristics and root-knot nematode indicators all reached extremely significant (P < 0.01) or significant (P < 0.05) level. With the increase of nitrogen fertilizer and biochar application, the growth, photosynthetic characteristics, yield and quality of tomatoes were showed a trend of firstly increased and then decreased. The number of root nodules, root-knot nematodes and eggs were showed a trend of firstly decreased and then increased, reached the lowest value under the N2C3 treatment combination; The leaf area, net photosynthetic rate, yield and vitamin C of the N2C3 treatment combination were reached significant than other treatment combinations. The number of root- knot nematodes and eggs were significantly lower than other treatment combinations. Therefore, in the facility soil (total nitrogen 1.52 g/kg, available phosphorus 191.9 mg/kg, and available potassium 323 mg/kg) infected with root-knot nematode disease in the Hexi area of Gansu province, the condition of 200 mg/kg nitrogen fertilizer of soil and 4 g/kg biochar of soil was conducive to tomato growth and quality, and had a good control effect on root-knot nematode disease.

Key words: Tomato, Biochar, Yield, Quality, Photosynthetic characteristics, Root-knot nematode

Table 1

Effects of nitrogen fertilizer and biochar interaction on tomato plant height, stem diameter and leaf area"

处理
Treatment
株高
Plant height (cm)
茎粗
Stem diameter (mm)
叶面积
Leaf area (cm2)
N1C1 37.33±1.02c 8.10±0.19e 10.43±0.09g
N1C2 37.90±1.40c 10.21±0.19bc 12.29±0.21f
N1C3 39.00±0.60c 9.73±0.34bcd 13.33±0.17e
N2C1 47.30±1.06ab 9.35±0.13d 12.48±0.19f
N2C2 47.77±0.75ab 9.88±0.20bcd 14.17±0.10d
N2C3 49.67±0.59a 11.02±0.32a 16.31±0.14b
N3C1 36.37±2.92c 8.40±0.08e 16.99±0.09a
N3C2 44.07±2.33b 10.40±0.25ab 15.83±0.24bc
N3C3 45.33±2.12ab 9.51±0.22cd 15.63±0.23c

Table 2

Effects of nitrogen fertilizer and biochar interaction on the photosynthetic characteristics of tomatoes"

处理Treatment Pn [μmol/(m2?s)] Gs [mmol/(m2?s)] Ci (μmol/mol) Tr [mmol/(m2?s)] SPAD
N1C1 8.26±0.16d 0.38±0.03d 187.80±2.69e 2.58±0.04e 45.33±1.76c
N1C2 11.76±0.08c 0.42±0.02d 244.36±2.49c 3.38±0.33cd 47.20±0.87c
N1C3 11.38±0.07c 0.50±0.03c 216.24±2.19d 3.04±0.28de 44.67±2.91c
N2C1 11.56±0.13c 0.55±0.03bc 264.42±2.68b 3.71±0.11bcd 55.00±1.15b
N2C2 12.37±0.05b 0.61±0.03ab 285.44±2.99a 4.16±0.33abc 60.67±2.03ab
N2C3 15.98±0.14a 0.67±0.02a 294.55±4.28a 4.75±0.08a 65.00±2.52a
N3C1 12.41±0.20b 0.51±0.01c 255.98±8.23bc 3.57±0.25bcd 59.67±0.88ab
N3C2 12.79±0.50b 0.54±0.02bc 193.88±2.67e 4.33±0.10ab 62.67±1.20a
N3C3 11.14±0.07c 0.60±0.02ab 253.24±1.66bc 3.86±0.43bcd 63.67±2.33a

Table 3

Effects of nitrogen fertilizer and biochar interaction on tomato yield and quality"

处理
Treatment
产量(g/株)
Yield (g/plant)
单果重
Single fruit weight (g)
单果直径
Single fruit diameter (mm)
番茄红素
Lycopene (mg/kg)
可溶性糖
Soluble sugar (%)
Vc
(mg/kg)
N1C1 346.13±7.22e 74.86±2.57d 39.43±1.28e 0.54±0.02f 3.35±0.08e 78.19±0.48h
N1C2 355.21±5.79de 86.95±2.53c 57.90±1.35c 0.65±0.02e 4.06±0.05cd 88.92±0.39g
N1C3 366.73±5.98d 95.09±1.55b 51.80±1.55d 0.82±0.01d 4.30±0.05b 99.54±0.23f
N2C1 411.24±2.95c 94.73±2.64b 55.04±1.27cd 0.75±0.03d 3.97±0.10d 88.08±0.58g
N2C2 464.11±3.22b 101.42±2.05b 65.67±1.66b 1.09±0.05b 4.22±0.06bc 125.26±0.50d
N2C3 498.27±4.74a 111.54±2.97a 73.78±1.00a 1.32±0.03a 4.80±0.06a 150.20±0.55a
N3C1 479.46±5.04b 94.42±1.96b 72.42±1.45a 1.23±0.03a 4.09±0.05cd 132.15±0.46c
N3C2 479.50±3.62b 99.26±2.02b 72.48±1.45a 1.01±0.04bc 4.66±0.06a 141.16±0.51b
N3C3 463.84±4.33b 97.20±1.64b 65.62±1.39b 0.96±0.03c 4.21±0.05bc 115.28±0.50e

Table 4

Effects of nitrogen fertilizer and biochar interaction on tomato root-knot nematodes"

处理Treatment 根重Root weight (g) 根结数Number of root-knots 线虫数Number of nematodes 虫卵数Number of eggs
N1C1 29.48±0.48c 529.33±4.70a 602.67±5.36a 4812.67±51.40a
N1C2 31.21±2.17c 523.00±7.51ab 532.00±6.43c 4338.33±62.65b
N1C3 34.27±2.59c 510.00±4.16ab 511.00±5.29d 4130.67±54.91c
N2C1 61.80±2.17b 446.33±8.57d 534.67±6.57c 3713.00±80.65ef
N2C2 66.50±2.21ab 403.00±6.51f 493.00±9.07e 3636.67±38.52f
N2C3 73.53±4.22a 388.67±5.24f 454.33±4.70f 3240.67±41.95g
N3C1 60.76±3.07b 475.00±7.37c 528.33±4.33c 3890.33±44.21de
N3C2 65.42±2.25ab 425.67±8.51e 500.33±4.91de 4024.67±58.72cd
N3C3 63.85±4.32b 507.33±1.20b 572.00±1.15b 4470.67±86.90b

Table 5

Effects of nitrogen, biochar and their interaction on tomato growth, yield and quality, photosynthetic characteristics and root-knot nematode indicators"

项目
Item
因素Factor
施氮量
Nitrogen
rate (N)
施生物炭量
Biochar
rate (C)
互作
效应
(N×C)
株高Plant height + + + ns
茎粗Stem diameter + + + + + +
叶面积Leaf area + + + + + +
Pn + + + + + +
Gs + + + + ns
Ci + + + + + +
Tr + + + ns
SPAD + + + ns
产量Yield + + + + + +
单果重Single fruit weight + + + + +
单果直径Single fruit diameter + + + + + +
番茄红素Lycopene + + + + + +
可溶性糖Soluble sugar + + + + + +
Vc + + + + + +
根重Root weight + + + ns
根结数Number of root-knots + + + + + +
线虫数Number of nematodes + + + + + +
虫卵数Egg mass + + + + + +

Table 6

Correlation analysis of tomato growth, yield and quality, photosynthetic characteristics and root-knot nematode indicators"

指标Index SD LA SPAD Y L SS Vc Pn Gs Ci Tr PK NN
PH 0.502** 0.367 0.616** 0.526** 0.404* 0.486* 0.407* 0.469* 0.740** 0.576** 0.662** -0.692** -0.448*
SD 0.416* 0.365 0.345 0.384* 0.799** 0.484* 0.696** 0.446* 0.350 0.567** -0.533** -0.751**
LA 0.804** 0.908** 0.905** 0.797** 0.935** 0.750** 0.704** 0.435* 0.712** -0.572** -0.599**
SPAD 0.907** 0.745** 0.599** 0.798** 0.560** 0.717** 0.507** 0.727** -0.666** -0.410*
Y 0.906** 0.666** 0.916** 0.661** 0.755** 0.502** 0.738** -0.738** -0.535**
L 0.707** 0.927** 0.786** 0.704** 0.591** 0.660** -0.705** -0.692**
SS 0.806** 0.817** 0.667** 0.365 0.707** -0.643** -0.833**
Vc 0.797** 0.680** 0.387* 0.736** -0.734** -0.710**
Pn 0.669** 0.591** 0.711** -0.698** -0.845**
Gs 0.645** 0.700** -0.707** -0.582**
Ci 0.524** -0.559** -0.521**
Tr -0.758** -0.655**
RK 0.797**
[1] Chen Y, Huang B, Hu W, et al. Environmental assessment of closed greenhouse vegetable production system in Nanjing,China. Journal of Soils & Sediments, 2013, 13(8):1418-1429.
[2] Guo H J, Liu J X, Zhang Y, et al. Significant acidification in major chinese croplands. Science, 2010, 327(5968):1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[3] 吕昊峰, 王亚芳, 李国元, 等. 施氮量和土壤灭菌对根结线虫侵染番茄根系的影响. 生态学杂志, 2019, 38(8):2450-2455.
[4] 田永强, 王敬国, 高丽红. 设施菜田土壤微生物学障碍研究进展. 中国蔬菜, 2013(20):1-9.
[5] 吴超群, 杨泽茂, 吴才君, 等. 设施蔬菜根结线虫危害及其防控机制研究进展. 北方园艺, 2018(11):164-172.
[6] 余海英, 李廷轩, 张锡洲. 温室栽培系统的养分平衡及土壤养分变化特征. 中国农业科学, 2010, 43(3):514-522.
[7] Min J, Zhao X, Shi W, et al. Nitrogen balance and loss in a greenhouse vegetable system in southeastern china. Pedosphere, 2011, 21(4):464-472.
[8] He F, Chen Q, Jiang R, et al. Yield and nitrogen balance of greenhouse tomato (Lycopersicum esculentum Mill.) with conventional and site-specific nitrogen management in northern China. Nutrient Cycling in Agroecosystems, 2007, 77(1):1-14.
[9] 沙海宁, 孙权, 李建设, 等. 不同施氮量对设施番茄生长与产量的影响及最佳用量. 西北农业学报, 2010, 19(3):104-108.
[10] 韩雪, 曲梅, 李银坤, 等. 不同施肥水平对温室番茄生长、氮吸收及产量品质的影响. 中国土壤与肥料, 2021(2):162-169.
[11] 赵耀东, 张传忠. 氮肥减量施加生物炭对花生幼苗生理特性及根系生长的影响. 江苏农业科学, 2023, 51(22):100-106.
[12] Hu C, Qi Y. Effect of compost and chemical fertilizer on soil nematode community in a Chinese maize field. European Journal of Soil Biology, 2010, 46(3/4):230-236.
[13] Ruan W B, Sang Y, Chen Q, et al. The response of soil nematode community to nitrogen,water,and grazing history in the Inner Mongolian steppe,China. Ecosystems, 2012, 15(7):1121-1133.
[14] 娄翼来, 李慧, 姜勇, 等. 设施菜地长期施肥对土壤线虫群落结构和多样性的影响. 土壤通报, 2013, 44(1):106-109.
[15] 严陶韬, 高婷, 周之栋, 等. 基于文献计量的生物炭土壤效应分析. 江苏农业科学, 2021, 49(4):191-199.
[16] 唐政, 邱建军, 邹国元, 等. 有机种植条件下水肥管理对氮素淋洗和氮素平衡的影响研究. 中国土壤与肥料, 2010(1):19-24.
[17] 张瑞花, 兰超杰, 刘雯, 等. 生物炭对反季节露地樱桃番茄生长及产量品质的影响. 分子植物育种, 2019, 17(14):4831-4839.
[18] 刘国玲, 王宏伟, 蒋健, 等. 生物炭对郑单958生理生化指标及产量的影响. 玉米科学, 2016, 24(4):105-109.
[19] Xiao K Z, Qi L, Wen J L, et al. Soil ematode response to biochar addition in a Chinese wheat field. Pedosphere, 2013, 23(1):98-103.
[20] 闫芳芳, 曾庆宾, 官宇, 等. 猪屎豆与淡紫拟青霉联合防治烟草根结线虫病的效果评价. 中国农学通报, 2018, 34(9):136-140.
doi: 10.11924/j.issn.1000-6850.casb17100096
[21] 翟鹏飞, 李受鹏, 覃丽霞, 等. 秸秆与生物炭配施对樱桃番茄生长及产量品质的影响. 分子植物育种, 2022, 20(21):7216-7223.
[22] 张寅寅, 黑多尔, 刘玥婷, 等. 荷兰进境百合种球中线虫的分离及分子鉴定. 农业环境科学学报, 2022, 41(12):2805-2809.
[23] 陈康. 密度和氮肥互作对单粒精播花生SPAD值、植株和产量性状的影响. 中国油料作物学报, 2021, 43(6):1070-1076.
doi: 10.19802/j.issn.1007-9084.2020270
[24] 曾博玲, 孙权, 刘喆, 等. 不同施氮量对樱桃番茄生长、品质和氮素积累量的影响. 江苏农业科学, 2024, 52(1):148-54.
[25] 景博, 牛宁, 张文龙, 等. 不同施氮量对加工番茄生长及土壤氮素平衡的影响. 新疆农业科学, 2020, 57(10):1830-1838.
doi: 10.6048/j.issn.1001-4330.2020.10.008
[26] Steiner C, Teixeira G W, Lehmann J, et al. Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and Soil, 2007, 291(1/2):275-290.
[27] 李欣雨, 张川, 闫浩芳, 等. 生物炭和灌水量对土壤保水性及温室番茄生理特性的影响. 排灌机械工程学报, 2022, 40(3):317-324.
[28] 魏彬萌, 王益权, 李忠徽. 烟杆生物炭对砒砂岩与沙复配土壤理化性状及玉米生长的影响. 水土保持学报, 2018, 32(2):217-222.
[29] 张树衡, 丁德东, 何静, 等. 两种生物肥料配施对再植花椒生长及光合特性的影响. 西北农业学报, 2021, 30(9):1355-1364.
[30] 郑剑超, 张巨松, 闫曼曼, 等. 氮肥追施模式对遮阴下棉花光合效率及产量的影响. 干旱区研究, 2016, 33(5):1036-1042.
[31] 张艳玲, 宋述尧. 氮素营养对番茄生长发育及产量的影响. 北方园艺, 2008(2):25-26.
[32] 张凯, 张勃, 王润元, 等. CO2浓度升高对半干旱区春小麦光合作用及水分生理生态特性的影响. 生态环境学报, 2021, 30(2):223-232.
doi: 10.16258/j.cnki.1674-5906.2021.02.001
[33] 陈威, 胡学玉, 张阳阳, 等. 番茄根区土壤线虫群落变化对生物炭输入的响应. 生态环境学报, 2015, 24(6):998-1003.
doi: 10.16258/j.cnki.1674-5906.2015.06.014
[34] 牛亚茹, 付祥峰, 邱良祝, 等. 施用生物质炭对大棚土壤特性、黄瓜品质和根结线虫病的影响. 土壤, 2017, 49(1):57-62.
[1] Hao Qingting, Gao Wei, Zhang Zeyan, Yan Hubin, Zhu Huijun, Zhang Yaowen. The Effects of Iron Fertilizer Application on Yield and Fe Concent of Grains in Mung Bean [J]. Crops, 2024, 40(5): 105-109.
[2] Sun Guangxu, Liu Ying, Wang Xinyi, Kong Deyong, Wei Na, Xing Liwen, Guo Wei. Effects of Population Density and Fulvic Acid on Yield and Nutritional Quality of Kidney Bean [J]. Crops, 2024, 40(5): 110-118.
[3] Wang Shanshan, Yang Yulei, Liu Feihu, Yang Yang, Tang Kailei, Li Tao, Niu Longjiang, Du Guanghui. Effects of Concentrations and Treatment Periods of Polyazole on Inflorescence and Leaves Yield and Cannabidiol Content of Industrial Hemp [J]. Crops, 2024, 40(5): 119-124.
[4] Huang Yulan, Liu Wenjun, Li Yanying, Zhou Jia, Zhou Lingzhi, Lao Chengying, Li Suping, Shen Zhangyou, Wei Benhui. Effects of Intercropping Cassava with Pumkin of Different Densities in Cassava Fields on Crop Yield, Economic Efficiency and Land Productivity [J]. Crops, 2024, 40(5): 125-130.
[5] Tian Qinqin, Zhuo Le, Chen Nana, Zheng Dechao, Wu Xiaojing, Yu Peng, Chen Pingping, Yi Zhenxie. Effects of Calcium-Magnesium Hydrotalcite on Cadmium Content in Brown Rice of Double-Cropping Rice and Soil Characteristics [J]. Crops, 2024, 40(5): 131-139.
[6] Mu Jianguo, Wang Peng, Liu Yantao, Cui Jiawei, Chen Yanfang, Wan Sumei, Chen Guihong. Effects of Different Harvesting Periods on the Commerciality and Yield of Edible Sunflower [J]. Crops, 2024, 40(5): 146-151.
[7] Li Hongliang, Sun Yuyou, Wei Caiqiang, Liu Dan, Xie Zhong, Cheng Dujuan, Qu Jinling, Song Ze, Meng Xianghai, Zhao Yuntong, Shi Xinrui. Effects of Controlled Irrigation and Fertilization on Growth, Yield and Quality of Japonica Rice in Cold Region [J]. Crops, 2024, 40(5): 152-158.
[8] Cao Shaona, Wu Lixiao, Guan Yaobing, Wang Kexiong. Effects of Different Types and Dosage of Bacterial Fertilizer on Yield and Quality of Broccoli [J]. Crops, 2024, 40(5): 159-166.
[9] Li Xinru, Xie Yanfen, Zhu Xuanquan, Wang Ge, Bai Yuxiang, Du Yu, Zhou Peng, Zhao Yuting, Zhu Hongqiong, Yang Fan, Xiao Zhiwen, Wang Wenbo, Fang Zhipeng, Han Jiabao, Wang Na. Soil Quality Evaluation and Its Correlation with Tobacco Leaf Quality under Different Previous Crops [J]. Crops, 2024, 40(5): 167-174.
[10] Li Junzhi, Wang Xiaodong, Dou Shuang, Xin Zongxu, Wu Hongsheng, Zhou Yufei, Xiao Jibing. Effects of L-Tryptophan on Growth and Development of Sorghum under Low Nitrogen Condition [J]. Crops, 2024, 40(5): 175-180.
[11] Liu Zichen, Shang Liyan, Ye Jiayu, Sheng Tian, Li Ruijie, Deng Jun, Tian Xiaohai, Zhang Yunbo, Huang Liying. Effects of Dense Planting with Reduced Nitrogen Input Cultivation on the Grain Quality of Hybrid Indica Rice [J]. Crops, 2024, 40(5): 194-203.
[12] Lu Jiahui, Wang Shuang, Li Yun, Guo Zhenqing, Wang Jian, Han Yucui, Lin Xiaohu. Effects of Reduced Nitrogen Application on Nitrogen Utilization and Grain Quality in Different Organs of Spring Wheat [J]. Crops, 2024, 40(5): 220-227.
[13] Zhou Xue, Han Fang, Su Leping, Li Xingxing, Niu Hongwei, Guo Wei, Yuan Hongʼan. Effects of Planting Density on Agronomic Traits and Yield of Spring Foxtail Millet [J]. Crops, 2024, 40(5): 241-246.
[14] Dong Mingyu, Zheng Hongfeng, Zhu Zhe. Effects of Different Endosperm Phenotypes on Agronomic Traits and Yield in Sorghum [J]. Crops, 2024, 40(5): 29-34.
[15] He Jiahui, Li Yanfeng, Yan Tianze, Zhang Xuanwen, Qin Peng, Guo Jinyou, Wang Kai, Liu Xionglun, Yang Yuanzhu. The Effects of Reducing Nitrogen Fertilizer Application on the Yield and Quality of Super Rice Weiliangyou 8612 [J]. Crops, 2024, 40(5): 73-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!