Crops ›› 2024, Vol. 40 ›› Issue (6): 186-193.doi: 10.16035/j.issn.1001-7283.2024.06.025

Previous Articles     Next Articles

Comparison of Photosynthetic Characteristics and Resistant Enzymes in Coffee Leaves under Different Levels of Leaf Rust Damage

Fu Xingfei1,2(), Li Yaqi1, Yu Haohao1, Li Guiping1, Bi Xiaofei1, Li Yanan1, Hu Faguang1(), Tai Jie3   

  1. 1Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000,Yunnan, China
    2Baoshan Longyang District Zuoyuan Coffee Co., Ltd., Baoshan 678000, Yunnan, China
    3Baoshan Longyang Economic Crop Technology Promotion Station, Baoshan 678000, Yunnan, China
  • Received:2024-02-27 Revised:2024-04-11 Online:2024-12-15 Published:2024-12-05

Abstract:

In order to investigate the physiological and biochemical changes of Coffea arabica after infected by leaf rust, the leaf defoliation rate (LF), relative chlorophyll content (SPAD), photosynthetic parameters, and four stress resistant enzyme activities were measured to analyze the effects of different levels of coffee leaf rust on physiological defoliation, photosynthesis, and stress resistance of coffee leaves under eight levels of leaf rust. The results showed that the LF increased with the increase of coffee leaf rust infection area, and SPAD first increased and then decreased with the increase of leaf rust infection area. The net photosynthetic rate (Pn), stomatal conductance (Gs), and transpiration rate of coffee leaves (Tr) were the highest at damage level III. The intercellular CO2 molar fraction of coffee leaves was highest at damage level VII. The water use efficiency (EWU) was highest at hazard level 0, and there was no significant difference between it and hazard level I, but it was significantly higher than levels II-VII. The light energy utilization efficiency (LUE) of hazard level IV was the highest, which was not significantly different from hazard levels II and III, but significantly higher than the other five hazard levels. The change in superoxide dismutase activity was not significant in hazard levels 0-VI. After being infected with coffee leaf rust, the activity of peroxidase could be increased to a certain extent; chitinase (CHT) and β-1, 3-glucanase (β-1, 3-GA) activities of all increased first and then decreased with the increase of hazard level. The activities of CHT, β-1, 3-GA were highest at hazard level III. Comprehensive analysis showed that under hazard level III, coffee leaves had higher photosynthesis and stress resistance, with relatively fewer fallen leaves.

Key words: Leaf rust, Fallen leaf rate, Photosynthetic characteristics, Resistant enzyme, Coffea arabica

Fig.1

Classification standard for the harm level of leaf rust disease"

Fig.2

Coffee fallen leaf rate under different damage levels Different lowercase letters indicate significant difference at P < 0.05. The same below."

Fig.3

SPAD under different damage levels"

Table 1

Photosynthetic parameters of coffee leaves under different damage levels"

危害等级
Damage level
Pn
[μmol/(m2·s)]
Gs
[mol/(m2·s)]
Ci
(μmol/mol)
Tr
[mmol/(m2·s)]
EWU
(mmol/mol)
LUE
(mol/mmol)
0 9.50±1.88cd 0.08±0.01c 230.90±27.27c 1.43±0.23c 6.82±1.28a 1.14±0.26bc
15.58±2.14ab 0.14±0.03b 223.78±21.09c 3.17±0.53b 5.31±0.55ab 1.51±0.17bc
14.75±2.14bc 0.16±0.02b 243.00±27.88c 3.73±0.49b 4.34±0.72bc 1.56±0.33abc
20.65±3.48a 0.23±0.03a 267.44±27.04bc 5.56±0.48a 4.02±0.78bc 1.88±0.24ab
11.74±2.13bc 0.14±0.01b 273.60±19.55bc 3.96±0.40b 2.89±0.44cd 3.33±1.62a
11.49±1.51bcd 0.13±0.02b 252.70±21.44c 3.77±0.46b 3.20±0.45cd 1.14±0.21bc
6.08±1.16d 0.13±0.02b 326.44±13.05b 4.23±0.46b 1.52±0.25de 0.48±0.10bc
0.20±0.10e 0.13±0.01b 438.00±12.22a 4.15±0.37b 0.05±0.03e 0.02±0.01c

Fig.4

SOD activity at different damage levels"

Fig.5

POD activity at different damage levels"

Fig.6

CHT activity at different damage levels"

Fig.7

β-1, 3-GA activity at different damage levels"

Fig.8

Correlation analysis between photosynthesis and various indicators of stress resistant enzymes in coffee leaves “*”indicates significant correlation at P < 0.05 level."

Table 2

Comprehensive scores of coffee leaves at different damage levels"

危害等级
Damage
level
主成分得分
Score of principal components
综合得分
Comprehensive
score
排序
Rank
PC1 PC2
0 1.17 -3.99 -0.65 6
1.56 -0.85 0.53 4
1.73 0.16 0.96 2
1.93 2.94 1.94 1
1.19 1.03 0.95 3
-0.21 0.20 -0.04 5
-2.11 0.47 -0.95 7
-5.23 0.03 -2.74 8
[1] 吴伟怀, 刘宝慧, 汪全伟, 等. 咖啡叶锈病菌单管巢式PCR检测体系的建立与应用. 特产研究, 2023, 45(5):1-7,15.
[2] 云南省咖啡产业专家组. 2021年度云南省咖啡产业发展报告. (2022-07-09) [2024-02-27]. https://nync.yn.gov.cn/uploadfile/s38/2022/0811/20220811110742328.pdf.
[3] Hugy I, Degaard C V. Becoming ʻWildʼ at the intersection of knowledges: Coffee rust crisis in Costa Rica. Ethnos, 2021, 86 (2):349-369.
[4] Salcedo-sarmiento S, Aucique-pérez C E, Silveira P R, et al. Elucidating the interactions between the rust Hemileia vastatrix and a Calonectria mycoparasite and the coffee plant. iScience, 2021, 24(4):102352.
[5] 付兴飞, 胡发广, 程金焕, 等. 保山精品咖啡产区小粒种咖啡病虫害种类调查及防治对策. 林业调查规划, 2023, 48(4):110-114.
[6] 付兴飞, 胡发广, 黄家雄, 等. 干热区海拔梯度对咖啡叶锈病影响. 热带生物学报, 2024, 15(3):337-342.
[7] 白学慧, 萧自位, 马关润, 等. 云南咖啡锈菌生理小种鉴定. 热带农业科技, 2023, 46(2):83-89.
[8] Zhang C J, Chen G X, Gao X X, et al. Photosynthetic decline in flag leaves of two field-grown spring wheat cultivars with different senescence properties. South African Journal of Botany, 2006, 72(1):15-23.
[9] Tsialtas J T, Theologidou G S, Karaoglanidis G S. Effects of pyraclostrobin on leaf diseases, leaf physiology, yield and quality of durum wheat under Mediterranean conditions. Crop Protection, 2018, 113:48-55.
[10] 常春义, 曹元, Ghulam M, 等. 白粉病对小麦光合特性的影响及病害严重度的定量模拟. 中国农业科学, 2023, 56(6):1061-1073.
doi: 10.3864/j.issn.0578-1752.2023.06.004
[11] 刘素莎, 丁小涛, 奚丹丹, 等. 不结球白菜侵染霜霉病后的生理生化响应. 分子植物育种, 2024, 22(8):2693-2698.
[12] 黄丽芳, 龙宇宙, 李金芹, 等. 低温胁迫对小粒种咖啡幼苗光合及叶绿素荧光特性的影响. 分子植物育种, 2024, 22(14):4706-4714.
[13] 萧自位, 白学慧, 肖兵, 等. 不同遮荫环境对小粒种咖啡光合作用的影响. 热带农业科技, 2023, 46(2):69-74.
[14] 胡发广, 刘红明, 毕晓菲, 等. 云南干热河谷区7个小粒咖啡叶片光合特性日变化的研究. 江西农业学报, 2020, 32(10):52-56.
[15] 胡发广, 刘红明, 毕晓菲, 等. 不同海拔的小粒咖啡光合特性日变化研究. 江西农业学报, 2022, 34(5):53-58.
[16] 杨庆丽, 张毅, 祁天涛, 等. 大麦叶斑病菌侵染过程及几丁质酶和β-1, 3-葡聚糖酶活性变化的研究. 甘肃农业大学学报, 2023, 58(1):122-129.
[17] Mojtaba M, Arthur L K. β-1,3-glucanase and chitinase activities in soybean root nodules. Journal of Plant Physiology, 2002, 159(3):245-256.
[18] 袁汇涛, 张云霞, 向梅梅, 等. 花生黑腐病抗病品种筛选及相关酶活性测定. 核农学报, 2021, 35(1):2258-2266.
[19] Kini K R, Vasanthi N S, Shetty H S. Induction of β-1, 3- glucanase in seedlings of pearl millet in response to infection by sclerospora graminicola. European Journal of Plant Pathology, 2000, 106(3):267-274.
[20] Belan L L, Belan L L, Rafael A D, et al. Standard area diagram with color photographs to estimate the severity of coffee leaf rust in Coffea canephora. Crop Protection, 2020, 130:105077.
[21] 郝紫微, 吴潇, 戴雨沁, 等. 赤霉素延缓‘丰水’梨落叶的生理机制. 南京农业大学学报, 2021, 44(1):61-67.
[22] 陶凌剑, 涂淑萍, 金莉颖, 等. 光照强度对圆齿野鸭椿叶片光合特征和叶绿素荧光参数的影响. 经济林研究, 2022, 40(2):225-231.
[23] 刘蔚漪, 辉朝茂, 刘广路, 等. 煤污病害对灰金竹叶片光合及生理生态特性的影响. 林业科学研究, 2020, 33(4):160-168.
[24] 丁婷婷, 王晓瑜, 段廷玉. 病害对豆科牧草光合作用、营养成分及根瘤的影响. 草业科学, 2019, 36(1):152-160.
[25] 李梦霞, 蔡露, 曾心美, 等. 不同品种(品系)木芙蓉对盐胁迫的响应. 北方园艺, 2022(15):67-73.
[26] Mauch F, Mauch-Mani B, Boller T. Antifungal hydrolases in pea tissue: II: inhibition of fungal growth by combinations of chitinase and β-1, 3-glucanase. Plant Physiology, 1988, 88(3):936-942.
doi: 10.1104/pp.88.3.936 pmid: 16666407
[27] 史娟, 胡景江, 王红玲, 等. 霜霉病菌对葡萄细胞壁水解酶的诱导作用与寄主抗病性的关系. 西北林学院学报, 2002(1):42-44.
[28] 龙艳玲, 苏基平, 胡军华, 等. 柑桔褐斑病菌侵染对不同抗性柑桔种质防御酶活性的影响. 中国南方果树, 2018, 47(1):6-11,16.
[29] 付兴飞, 胡发广, 李贵平, 等. 小粒咖啡有害生物综合防控. 北京: 中国农业出版社, 2023.
[1] Li Junzhi, Wang Xiaodong, Dou Shuang, Xin Zongxu, Wu Hongsheng, Zhou Yufei, Xiao Jibing. Effects of L-Tryptophan on Growth and Development of Sorghum under Low Nitrogen Condition [J]. Crops, 2024, 40(5): 175-180.
[2] Zhou Qi, Wu Fang, Wang Zhenlong, Xu Zhipeng, Deng Chaochao, Shi Zhiguo, Zhang Jing, Su Cuicui, Yu Yalin, Zhou Yanfang. Effects of Nitrogen Fertilizer and Biochar Application Rate Interaction on Growth and Root-Knot Nematode Disease of Greenhouse Tomatoes [J]. Crops, 2024, 40(5): 212-219.
[3] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[4] Du Qingfu, Shang Lili, Lü Jiahao, Zhang Ruiqing, Yao Jiangang, Qiu Pengfei, Zhao Jianwei, He Shaozhen. Effects of Different Light Intensity on Photosynthetic Characteristics and Flowering of Sweet Potato [J]. Crops, 2024, 40(2): 172-177.
[5] Guan Qinglin, Piao Shengyuan, Zhang Siwei, Wang Jun, Lei Yunkang, Zhong Qiu, Zhao Mingqin. Effects of Combined Application of Medium-Trace Elements on Photosynthetic Characteristics, Carbon and Nitrogen Metabolism, Yield and Quality of Cigar Tobacco [J]. Crops, 2023, 39(5): 187-196.
[6] Zhang Dongxu, Hu Danzhu, Yan Jinlong, Feng Liyun, Wu Zhiyuan, Zhang Junling, Li Yanhua. Effects of Spraying Streptomyces on Yield and Photosynthetic Characteristics of Late-Sown Wheat under Different Crop Rotations [J]. Crops, 2023, 39(5): 255-263.
[7] Luo Siwei, Shi Xiunan, Jia Yonghong, Zhang Jinshan, Wang Kai, Li Dandan, Wang Runqi, Dong Yanxue, Shi Shubing. Effects of Drip Irrigation Capillary Spacing and Drop Spacing on Photosynthesis, Dry matter Accumulation, and Yield Formation of Uniformly Sown Winter Wheat [J]. Crops, 2023, 39(3): 230-237.
[8] Gao Wei, Hao Qingting, Zhang Zeyan, Wang Qian, Yan Hubin, Zhu Huijun, Zhao Xueying, Zhang Yaowen. Effects of Nitrogen and Phosphorus Application on Yield, Root Morphology and Photosynthetic Characteristics of Adzuki Bean [J]. Crops, 2023, 39(1): 109-114.
[9] Dong Yang. Study on the Physiological Response of Broomcorn Millet to Different Herbicides [J]. Crops, 2022, 38(5): 255-260.
[10] Sun Qingsheng, Yuan Cheng, Zhang Yuxian. Effects of Reducing Nitrogen Fertilizer and Inoculating Rhizobium on Photosynthetic Characteristics and Yield of Black Soybean [J]. Crops, 2022, 38(4): 132-137.
[11] Zheng Minna, Liang Xiuzhi, Kang Jiahui, Li Yinfan, Wang Hui, Han Zhishun, Chen Yanni. Effects of Different Nitrogen Application Rates on Photosynthetic Characteristics and Nitrogen Photosynthetic Utilization Efficiency of Fed Oats [J]. Crops, 2022, 38(4): 249-254.
[12] Ling Yibo, Feng Yunge, Wang Binjie, Zhang Kai, Chen Nianlai. Effects of Density and Row Spacing on Canopy Structure and Photosynthetic Characteristics in Sunflower [J]. Crops, 2022, 38(3): 155-160.
[13] Yan Xiaocui, Duan Zhenying, Yang Huali, Yao Zhanjun, Li Zaifeng. QTLs Mapping of Leaf Rust Resistance in Wheat Variety Zhoumai 22 [J]. Crops, 2022, 38(2): 69-74.
[14] Zhang Panpan, Zhang Hongpeng, Guo Yaning. Effects of Two Plant Growth Regulators on Photosynthetic Characteristics and Yield of Proso Millet [J]. Crops, 2021, 37(6): 159-163.
[15] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!