Crops ›› 2025, Vol. 41 ›› Issue (3): 85-91.doi: 10.16035/j.issn.1001-7283.2025.03.012
Previous Articles Next Articles
Xu Lang1,2(), Wang Yu1,2, Wang Xiangru3, Li Hongjun1, Tang Wan1, Wang Bingqing1,2, Yang Qiang1, Zhang Fan1,2, Chen Zhiyuan1,2(
), Zhou Meiliang3(
)
[1] | 赵钢, 唐宇, 王安虎. 苦荞的成分功能研究与开发应用. 四川农业大学学报, 2017, 19(4):355-358,368. |
[2] | 任长忠, 陈庆富, 李洪有, 等. 苦荞种植资源评价及遗传育种研究展望. 西北植物学报, 2023, 43(7):1251-1260. |
[3] | 吴立根, 屈凌波, 王岸娜, 等. 荞麦营养功能特性及相关食品开发研究进展. 粮油食品科技, 2018, 26(3):41-44. |
[4] | Gimenez-Bastida J A, Zielenski H. Buckwheat as a functional food and its effects on health. Journal of Agricultural and Food Chemistry, 2015, 63(36):7896-7913. |
[5] |
Li S Q, Zhang Q H. Advances in the development of functional foods from buckwheat. Critical Reviews in Food Science and Nutrition, 2001, 41(6):451-464.
doi: 10.1080/20014091091887 pmid: 11592684 |
[6] | 张波波. 基于AMPK通路的D-手性肌醇改善血管内皮功能紊乱机制研究. 杨凌:西北农林科技大学, 2017. |
[7] | 朱瑞雪. HPLC-FLD检测荞麦中D-荞麦碱的方法研究. 杨凌:西北农林科技大学, 2017. |
[8] | Yang W, Su Y, Dong G Q, et al. Liquid chromatography-mass spectrometry-based metabolomics analysis of flavonoids and anthraquinones in Fagopyrum tataricum L. Gaertn. (tartary buckwheat) seeds to trace morphological variations. Food Chemistry, 2020,331:127354. |
[9] | Zhong L Y, Lin Y J, Wang C, et al. Chemical profile, antimicrobial and antioxidant activity assessment of the crude extrcat and its main flavonoids from tartary buckwheat sprouts. Molecules, 2022, 27(2):374. |
[10] |
Park B I, Kim J, Lee K, et al. Flavonoids in common and tartary buckwheat hull extracts and antioxidant activity of the extracts against lipids in mayonnaise. Journal of Food Science and Technology, 2019, 56(5):2712-2720.
doi: 10.1007/s13197-019-03761-2 pmid: 31168153 |
[11] | Peng W P, Wang N, Wang S M, et al. Effect of co-treatment of microwave and exogenous L-phenylalanine on the enrichment of flavonoids in Tartary buckwheat sprouts. Journal of the Science of Food and Agriculture, 2023, 103(4):2014-2022. |
[12] | 李丹, 肖刚, 丁霄霖. 苦荞黄酮抗氧化作用的研究. 无锡轻工大学学报, 2001, 20(1):44-47. |
[13] | 姚佳, 靳秔, 贾健斌. 苦荞黄酮及其生理功能的研究进展. 食品科技, 2014, 39(10):194-197. |
[14] | 胡建平, 张忠, 姚翠. 苦荞保健面包的研制. 食品工业, 2006 (6):21-22. |
[15] | 辛力, 肖华志, 胡肖松. 苦荞麦苦味物质与呈色物质的鉴定. 杂粮作物, 2004, 24(2):86-87. |
[16] | 从李霞. 多糖修饰脂质体对掩蔽槲皮素苦味的研究. 南京:南京林业大学, 2023. |
[17] | 国家药典委员会. 中华人民共和国药典一部. 北京: 中国医药科技出版社,2020:370. |
[18] | 王玉, 张继斌, 陈志元, 等. 一种苦荞提取物的鉴别方法:202010564543.1. 2020-08-14. |
[19] | Li C S, Yang D Q, Li L H, et al. Comparison of the taste mechanisms of umami and bitter peptides from fermented mandarin fish (Chouguiyu) based on molecular docking and eletronic tongue technology. Food & Function, 2023, 14(21):9671-9680. |
[20] |
Kumar D, Kumar H, Vedasiromoni J R, et al. Bio-assay guided isolation of α-glucosidase inhibitory constituents from Hibiscus mutabilis leaves. Phytochemical Analysis, 2012, 23(5):421-425.
doi: 10.1002/pca.1375 pmid: 22161959 |
[21] | 陈勇, 张晴. 羟基黄酮的药理学研究近况. 中草药, 1998, 29(8):569-570. |
[22] | 刘诗平, 陈尚猛, 朱卫东. 槲皮素及其衍生物的生物活性研究进展. 中草药, 1991, 22(4):182-184. |
[23] | 章洁琼, 邹军, 卢扬, 等. 不同荞麦品种主要功能成分分析及评价. 种子, 2020, 39(2):107-112. |
[24] | 王迪, 邓放, 李阳倩, 等. UPLC-QQQ/MS法分析比较不同品种苦荞麦代表性成分含量. 粮食与油脂, 2021, 34(9):63-64. |
[25] | 张玉玮, 李洁, 袁勇, 等. 苦荞籽粒芦丁降解酶的纯化、酶学性质及部分一级结构分析. 生物工程学报, 2017, 33(5):796-807. |
[26] | 朱瑞, 高南南, 陈健民. 苦荞麦的化学成分和药理作用. 中国野生植物资源, 2003, 22(2):7-9. |
[27] | Mitsuru W, Yasuo O, Tojiro T. Antioxidant compounds from buckwheat (Fagopyrum esculentum Moench) Hulls. Journal of Agricultural and Food Chemistry, 1997,45:1039-1044. |
[28] | 甄云鹏. 苦荞壳中黄酮类化合物提前、纯化与其组分分离、测定. 成都:成都理工大学, 2007. |
[29] | 闫文杰, 段昊, 吕燕妮, 等. 苦荞在我国保健食品中的应用进展. 食品科技, 2021, 46(6):55-60. |
[1] | Xiang Dabing, Ye Xueling, Fan Yu, Liu Changying, Wan Yan, Wu Qi, Wu Xiaoyong, Peng Lianxin, Zhao Gang, Zou Liang. Breeding and Cultivation Technology of New Tartary Buckwheat Variety Chengku No.2 [J]. Crops, 2024, 40(6): 249-253. |
[2] | Xu Lang, Zhang Jibin, Shi Weibiao, Ye Tao, Chen Bo, Lü Qingyin, Wang Yu, Huang Zhian, Shen Rui, Chen Zhiyuan. Investigation and Analysis of Tartary Buckwheat and Planting Soil Resources in Different Producing Areas [J]. Crops, 2024, 40(6): 78-83. |
[3] | Yang Enze, Xie Rui, Han Ping'an, Zhang Yonghu, Liu Jinchuan, Niu Suqing, Wen Rui, Wang Chunyong, Jin Xiaolei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits of 162 Tartary Buckwheat Resources in Inner Mongolia [J]. Crops, 2024, 40(2): 15-22. |
[4] | Zhang Jun, Cai Suyun, Xu Zihao, Hou Lei, He Runli, Yin Guifang, Wang Lihua, Wang Yanqing, Lu Wenjie, Sun Daowang. Cloning, Bioinformatics and Expression Analysis of FtERF Gene in Fagopyrum tataricum [J]. Crops, 2024, 40(2): 23-29. |
[5] | Du Hanmei, Tan Lu, Chen Bo, Yu Qiuzhu, Wu Dandan, Wang Anhu. Comprehensive Evaluation of Cadmium Tolerance of Tartary Buckwheat at Seedling Stage [J]. Crops, 2024, 40(2): 40-53. |
[6] | Hao Yani, Pei Hongbin, Gao Zhenfeng, Zhang Yijun, Yang Zhenping. Effects of Bacillus vallismortis and Straw Replacing Phosphorus Fertilizer on Growth, Yield and Quality of Tartary Buckwheat [J]. Crops, 2024, 40(1): 204-213. |
[7] | Chen Yuanyuan, Li Guangsheng, Liu Yang, He Yuqi, Zhou Meiliang, Fang Zhengwu. Molecular Cloning and Functional Identification of Resistance Gene FtTIR of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(4): 44-51. |
[8] | Bai Kaihong, Abie Xiaobing, Xu Xiaoli, Jiang Na, Li Jianqiang, Luo Laixin. Analysis of Fungal Diversity in Seeds of Tartary Buckwheat from Liangshan, Sichuan Province [J]. Crops, 2023, 39(3): 260-266. |
[9] | Li Guangsheng, Lu Xiang, Lai Dili, Zhang Kaixuan, Wang Haihua, Zhou Meiliang. Molecular Cloning and Functional Analysis of Resistance Gene FtABCG12 of Tartary Buckwheat to Blight [J]. Crops, 2023, 39(3): 43-50. |
[10] | Wang Junzhen, Zhou Meiliang, Li Faliang, Zhang Kaixuan, Zhu Jianfeng, Shen A’yi, Luogu Youfu, Yao Juhong, Yin Yuanjie, Wu Dongming, Zhang Jie. Breeding and Cultivation Technology of New Tartary Buckwheat Variety “Chuanqiao 6” [J]. Crops, 2022, 38(6): 241-244. |
[11] | Shi Xian, Li Hongyou, Lu Bingyue, Zhou Yun, Zhao Jiju, Zhao Mengli, Liang Jing, Meng Hengling. Physiological Responses of Three Tartary Buckwheat Varieties to Salt Stress and Evaluation of Salt Tolerance [J]. Crops, 2022, 38(3): 149-154. |
[12] | Yin Guifang, Duan Ying, Yang Xiaolin, Cai Suyun, Wang Yanqing, Lu Wenjie, Sun Daowang, He Runli, Wang Lihua. Cloning and Bioinformatics Analysis of FtC4H Gene from Tartary Buckwheat [J]. Crops, 2022, 38(1): 77-83. |
[13] | Weng Wenfeng, Wu Xiaofang, Zhang Kaixuan, Tang Yu, Jiang Yan, Ruan Jingjun, Zhou Meiliang. The Overexpression of FtbZIP5 Improves Accumulation of Flavonoid in the Hairy Roots of Tartary Buckwheat and Its Salt Tolerance [J]. Crops, 2021, 37(4): 1-9. |
[14] | Jia Ruiling, Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning. Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms [J]. Crops, 2021, 37(3): 19-27. |
[15] | Jin Jiangang, Tian Zaifang. Grey Correlation Analysis of Introduced Tartary Buckwheat in the Northern Shanxi [J]. Crops, 2021, 37(2): 52-56. |
|