Crops ›› 2016, Vol. 32 ›› Issue (5): 94-100.doi: 10.16035/j.issn.1001-7283.2016.05.016

Previous Articles     Next Articles

Effects of Arbuscular Mycorrhizal Fungus Inoculation on Growth and Nitrogen Utilization of Intercropped Maize and Soybean in Purple Soil under Facilitated Condition

Zhao Qianxu1,2,Yue Xianrong1,Xia Yunsheng1,2,Zhang Naiming1,2,Nian Fuzhao1,Yang Yunqiang1,Ma Yulin1   

  1. 1 College of Resources and Environment,Yunnan Agricultural University,Kunming 650201,Yunnan,China
    2 Yunnan Engineering Laboratory of Soil Fertility and Pollution Remediation,Kunming 650201,Yunnan,China
  • Received:2016-07-13 Revised:2016-08-14 Online:2016-10-15 Published:2018-08-26
  • Contact: Yunsheng Xia

Abstract:

In order to clarify the contribution of improving nitrogen (N) utilization by maize (Zea mays L.) and soybean (Glycine max L.) and reducing N residue in the purple soil with arbuscular mycorrhizal fungus (AMF) inoculation for different maize/soybean intercropping systems, the facility pot experiment was conducted under three kinds of roots separation ways of maize/soybean intercropping system with no separation, nylon net separation, plastic-film separation and different AMF treatments [no AMF (NM), Glomus mosseae (GM) inoculation]. The results showed that GM inoculation promoted AMF infection rate, plant height, shoot and root biomass, N concentration in shoot and root for maize and soybean to a different degree. While GM inoculation significantly decreased available N content in the soil growing with of maizes and soybeans. AMF infection rate with GM-no root separation treatment of maize and soybean were all significantly highest increased. Whether inoculating AMF or not, the plant biomass of and N concentration in soybean under roots separation were significantly higher than no root separation, while plant biomass of and N concentration in maize showed an opposite trend. In addition, under GM treatment, available N content in the soil planting with maize and soybean was significantly lower respectively for nylon net separation and no root separation treatments than plastic-film separation treatment. In conclusion, GM-no root separation treatment was the best one for maize growth and N utilization; and GM-nylon net separation treatment performed best in terms of soybean growth and N utilization and that also significantly reduced the available N residue in the soil growing with maize and soybean, which was expected to reduce the loss of N in the soil and the pollution risk of N loss to surface water.

Key words: Arbuscular mycorrhizal fungus, Purple soil, Maize/soybean intercropping, Roots separation, Nitrogen utilization

Table 1

Variance analysis of AMF colonization rate and growth indices of intercropping maize and soybean under different AMF treatments and root separation ways"

因素Factor 菌根侵染率
Colonization rate
根长
Root length
地上部干重
Shoot dry weight
根系干重
Root dry weight
株高
Plant height
根冠比
Root/shoot ratio
玉米Maize 大豆
Soybean
玉米Maize 大豆
Soybean
玉米Maize 大豆
Soybean
玉米Maize 大豆
Soybean
玉米Maize 大豆
Soybean
玉米Maize 大豆
Soybean
菌根处理AMF treatment *** *** *** *** *** *** *** *** *** NS
*** **
根系分隔方式Root separation way *** *** *** *** *** *** *** *** NS
*** *** ***
菌根处理×根系分隔方式
AMF treatment×Root separation way
***
***
***
***
**
***
*
***
NS
***
*
***

Table 2

Mycorrhizal colonization rate and plant growth indices of intercropping maize and soybean under AMF treatments and root separation ways"

作物
Crop
根系分隔方式
Root separation way
菌根处理
AMF treatment
菌根侵染率 (%)Colonization rate 根长(cm/pot)
Root length
干重Dry biomass(g/pot) 株高(cm)
Plant height
根冠比
Root/shoot rate
地上部分Shoot 根系Root
玉米
Maize
不分隔
No separation
NM 0 439.18±3.21b 15.59±0.74ab 2.08±0.03e 71.67±1.01αβ 0.27±0.01c
GM 61.35±0.88a 304.15±14.91c 16.82±0.16a 3.23±0.02b 73.67±0.73α 0.15±0.01e
塑料膜分隔
Plastic film separation
NM 0 309.30±6.80c 10.06±0.33d 2.59±0.06d 69.58±0.88β 0.31±0.01b
GM 53.71±0.59c 511.01±1.12a 15.43±0.30ab 3.22±0.04b 73.83±0.88α 0.18±0.01d
尼龙网分隔
Nylon net separation
NM 0 417.80±3.61b 12.34±0.47c 2.88±0.04c 68.48±0.84γ 0.34±0.01a
GM 50.05±1.57b 505.48±7.44a 14.90±0.85b 3.73±0.18a 73.67±1.09α 0.26±0.01c
大豆
Soybean
不分隔
No separation
NM 0 216.00±2.39a 3.49±0.09f 0.54±0.01d 42.33±0.44c 0.12±0.01c
GM 60.04±1.42a 123.08±3.93c 4.96±0.06c 0.84±0.01c 46.97±0.29b 0.14±0.02c
塑料膜分隔
Plastic film separation
NM 0 165.11±7.46b 4.32±0.02e 0.90±0.09c 45.88±0.75b 0.22±0.01ab
GM 52.08±1.04b 127.25±3.60c 5.92±0.04a 1.20±0.04b 49.33±0.73a 0.21±0.00b
尼龙网分隔
Nylon net separation
NM 0 218.04±7.25a 4.63±0.02d 0.92±0.02c 45.25±0.97b 0.25±0.02a
GM 50.82±1.22b 123.55±1.83c 5.54±0.05b 1.93±0.02a 37.67±0.73d 0.15±0.01c

Table 3

Variance analysis of N indexes of intercropping maize and soybean under AMF treatments and root separation ways"

因素Factor 地上部氮含量
Shoot N content
根系氮含量
Root N content
土壤pH值
Soil pH value
土壤碱解氮含量
Soil available N content
玉米Maize 大豆Soybean 玉米Maize 大豆Soybean 玉米Maize 大豆Soybean 玉米Maize 大豆Soybean
菌根处理AMF treatment ** *** *** *** *** *** *** ***
根系分隔方式Root separation way *** *** *** *** ** NS *** ***
菌根处理×根系分隔方式
AMF treatment×Root separation way
**
***
***
***
***
NS
***
*

Table 4

N accumulation,pH value and available N content in the soil of intercropping soybean and maize under AMF treatments and roots separation ways"

作物
Crop
根系分隔方式
Root separation way
菌根处理
AMF treatment
地上部氮含量(g/kg)
Shoot N content
根系氮含量(g/kg)
Root N content
土壤pH值
Soil pH value
土壤碱解氮含量(mg/kg)
Soil available N content
玉米
Maize
不分隔No separation NM 9.85±0.11b 6.45±0.16b 7.43±0.02c 91.58±0.57c
GM 12.47±0.58a 7.23±0.04a 7.19±0.05d 86.60±0.72d
塑料膜分隔Plastic film separation NM 7.51±0.04d 5.11±0.03c 7.58±0.03b 122.42±1.43a
GM 8.93±0.45bc 6.55±0.18b 7.25±0.03d 92.40±0.71c
尼龙网分隔Nylon net separation NM 8.54±.021cd 5.20±0.03c 7.75±0.05a 100.60±2.11b
GM 7.84±0.63cd 7.48±0.21a 6.74±0.04e 83.88±1.85d
大豆
Soybean
不分隔No separation NM 3.20±0.10f 12.63±0.27d 7.43±0.02x 91.83±0.61c
GM 5.91±0.04d 10.27±0.11e 7.17±0.06z 88.25±0.83d
塑料膜分隔Plastic film separation NM 5.61±0.05e 13.95±0.31bc 7.38±0.10xy 100.23±1.14b
GM 6.94±0.04b 14.79±0.29b 7.22±0.02yz 91.87±0.98c
尼龙网分隔Nylon net separation NM 6.29±0.11c 13.06±0.27cd 7.45±0.00x 105.42±0.97a
GM 7.20±0.05a 18.83±0.44a 7.18±0.04z 85.61±0.46d
[1] Smith S E, Read D J.Mycorrhizal Symbiosis. London: Academic Press, 1997: 379-383.
[2] 马玲, 马琨, 汤梦洁 , 等. 间作与接种AMF对连作土壤微生物群落结构与功能的影响. 生态环境学报, 2013,22(8):1341-1347.
[3] Liu R J, Huang Y, Lin X G . Recent advances in the studies of mycorrhizology. Journal of Fungal Research, 2009,7(2):116-124.
[4] Harley J L . The significance of mycorrhiza. Mycological Research, 1989,92(2):129-139.
doi: 10.1016/S0953-7562(89)80001-2
[5] 张亦涛, 任天志, 刘宏斌 , 等. 玉米大豆间作降低小麦玉米轮作体系土壤氮残留的效应与机制. 中国农业科学, 2015,48(13):2580-2590.
doi: 10.3864/j.issn.0578-1752.2015.13.010
[6] 谢先进, 张俊伶 . 丛枝菌根真菌(AMF)对玉米/蚕豆和玉米/稗草互作体系植物生长的反馈调节. 植物营养与肥料学报, 2016,22(3):643-649.
doi: 10.11674/zwyf.14431
[7] 李隆, 杨思存, 孙建好 , 等. 小麦/大豆间作中作物种间的竞争作用和促进作用. 应用生态学报, 1999,10(2):197-198.
[8] 吴科生, 宋尚有, 李隆 , 等. 施氮和豌豆/玉米间作对土壤无机氮时空分布的影响. 中国生态农业学报, 2014,22(12):1397-1404.
doi: 10.13930/j.cnki.cjea.140869
[9] 李淑敏, 武帆 . 大豆/玉米间作体系中接种AM真菌和根瘤菌对氮素吸收的促进作用. 植物营养与肥料学报, 2011,17(1):110-116.
doi: 10.11674/zwyf.2011.0115
[10] Hodge A . N capture by Plantago lanceolata and Brassica napus from organic material:the influence of spatial dispersion,plant competition and an arbuscular mycorrhizal fungus. Journal of Experimental Botany, 2003,54(391):2331-2342.
doi: 10.1093/jxb/erg249
[11] Johansen A, Jensen E S . Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biology and Biochemistry, 1996,28(1):73-81.
doi: 10.1016/0038-0717(95)00117-4
[12] 王硕, 张仕颖, 史静 , 等. 丛枝菌根真菌与间作对滇池流域红壤上大豆生长及磷累积的影响. 作物杂志, 2015(6):106-111.
doi: 10.16035/j.issn.1001-7283.2015.06.018
[13] 贾广军, 张仕颖, 谷林静 , 等. 菌根对紫色土上间作玉米生长及磷素累积的影响. 中国生态农业学报, 2014,22(5):516-524.
doi: 10.3724/SP.J.1011.2014.31105
[14] 鲍士旦 . 土壤农化分析.3版.北京: 中国农业出版社, 2000.
[15] 彭思利, 邓胤, 张宇亭 . 丛枝菌根真菌根外菌丝对紫色土中的氮素利用状况. 中国农学通报, 2010,26(6):269-274.
[16] 陈永亮, 陈保冬, 刘蕾 , 等. 丛枝菌根真菌在土壤氮素循环中的作用. 生态学报, 2014,34(17):4807-4815.
doi: 10.5846/stxb201309242346
[17] 孙秋玲, 戴思兰, 张春英 , 等. 菌根真菌促进植物吸收利用氮素机制的研究进展. 生态学杂志, 2012,31(5):1302-1310.
[18] 杨凤铃, 赵方贵, 刘洪庆 , 等. 不同烟草栽培地区土壤理化性质与AM真菌分布关系. 中国农学通报, 2011,27(1):116-120.
[19] Rengel Z . Genetic control of root exudation. Plant and Soil, 2002,245(1):59-70.
doi: 10.1023/A:1020646011229
[20] Laheurte F, Leyval C, Berthelin J . Root exudates of maize,pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis (Rehovot), 1990,9(1/2/3):111-116.
[21] 方燕, 唐明, 孙学广 , 等. 不同气候条件下AM真菌资源与土壤理化性质的关系. 西北农林科技大学学报(自然科学版), 2010,38(10):76-82.
[22] 郝艳茹, 劳秀荣, 赵秉强 , 等. 隔根对小麦/玉米间套种植生长特性的影响. 麦类作物学报, 2003,23(1):71-74.
doi: 10.7606/j.issn.1009-1041.2003.01.027
[23] Peng S L, Guo T, Liu G C . The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China. Soil Biology and Biochemistry, 2013,57:411-417.
doi: 10.1016/j.soilbio.2012.10.026
[24] 武帆, 李淑敏, 孟令波 . 菌根真菌、根瘤菌对大豆/玉米氮素吸收作用的研究. 东北农业大学学报, 2009,40(6):6-10.
doi: 10.3969/j.issn.1005-9369.2009.06.002
[1] Chunxi Li,Lingling Zhang,Shouchen Ma,Yun Shao,Huiting Chen,Jingruo Wang. Effects of Organic Materials Returning on Soil Carbon and Nitrogen Contents,Yield and Economic Benefit in Wheat [J]. Crops, 2017, 33(2): 145-150.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .