Crops ›› 2018, Vol. 34 ›› Issue (1): 16-24.doi: 10.16035/j.issn.1001-7283.2018.01.003

Previous Articles     Next Articles

Review on Application of Low Accumulation Crops on Remediation of Farmland Contaminated by Heavy Metals

Chen Liangmei1,Li Jiangxia1,Hu Zhaoyun2,Ye Wenling1,Wu Wenge3,Ma Youhua1   

  1. 1 School of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui, China
    2 Agricultural Environmental Protection Station in Yi’an District, Tongling 244000, Anhui, China;
    3 Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
  • Received:2017-07-06 Revised:2017-12-13 Online:2018-02-20 Published:2018-08-24

Abstract:

Remediation of heavy metal contaminated soils has attracted wide attention since heavy metal pollution is becoming more and more serious. Uptake and accumulation of heavy metals by crops vary significantly not only among interspecific varieties but also among intraspecific varieties, which provides possibilities for breeding and screening low accumulation crop varieties. It was reviewed the research progress on the principles and requirements for the selection of low accumulation crop varieties and interspecific and intraspecific differences in heavy metals accumulation in crops. The mechanisms of low accumulation of heavy metals in crops were analysed and the application of low accumulation varieties on the prevention and control of heavy metal pollution in farmland was discussed. The future research focus was also prospected.

Key words: Low accumulation crop of heavy metals, Remediation of farmland contaminated by heavy metals, Farmland heavy metals pollution

[1] Qiu Q, Wang Y T, Yang Z Y , et al. Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food & Chemical Toxicology, 2011,49:2260-2267.
[2] Liu W T, Zhou Q X, An J , et al. Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. Journal of Hazardous Materials, 2010,173:737-743.
doi: 10.1016/j.jhazmat.2009.08.147
[3] Liu W T, Zhou Q X, Zhang Y L , et al. Lead accumulation in different Chinese cabbage cultivars and screening for pollution-safe cultivars. Journal of Environmental Management, 2010,91:781-788.
[4] Grant C A, Clarke J M, Duguid S , et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 2008,390:301-310.
doi: 10.1016/j.scitotenv.2007.10.038 pmid: 18036635
[5] Adamo P, Mingo A, Coppola I , et al. Plant colonization of brownfield soil and post-washing sludge:effect of organic amendment and environmental conditions. International Journal of Environmental Science & Technology. 2014,12(6):1811-1824.
[6] 孙洪欣, 薛培英, 赵全利 , 等. 镉、铅积累与转运在冬小麦品种间的差异. 麦类作物学报, 2015,35(8):1161-1167.
[7] Barceló J, Poschenrieder C . Phytoremediation:principles and perspectives. Contributions to Science, 2003,2(3):333-344.
[8] Baker A J M . Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Nutrient, 1981,3(4):643-654.
doi: 10.1080/01904168109362867
[9] 刘维涛, 周启星, 孙约兵 , 等. 大白菜(Brassica pekinensis L.)对镉富集基因型差异的研究. 应用基础与工程科学学报, 2010,18(2):226-235.
doi: 10.3969/j.issn.1005-0930.2010.02.0005
[10] Arthur E, Crews H, Morgan C . Optimizing plant genetic strategies for minimizing environmental contamination in the food chain. International Journal of Phytoremediation, 2000,2:1-21.
doi: 10.1080/15226510008500027
[11] 王新, 吴燕玉 . 不同作物对重金属复合污染物吸收特性的研究. 农业环境保护, 1998(5):193-196.
doi: 10.1088/0256-307X/15/12/025
[12] Alexander P D, Alloway B J, Dourado A M . Genotypic variations in the accumulation of Cd,Cu,Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution, 2006,144:736-745.
doi: 10.1016/j.envpol.2006.03.001
[13] 张永志, 郑纪慈, 徐明飞 , 等. 重金属低积累蔬菜品种筛选的探讨. 浙江农业科学, 2009(5):872-875.
doi: 10.3969/j.issn.0528-9017.2009.05.007
[14] Wang G, Su M Y, Chen Y H , et al. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environmental Pollution, 2006,144:127-135.
doi: 10.1016/j.envpol.2005.12.023
[15] 曾翔, 张玉烛, 王凯荣 , 等. 不同品种水稻糙米含镉量差异. 生态与农村环境学报, 2006,22(1):67-69.
doi: 10.3969/j.issn.1673-4831.2006.01.015
[16] 李冰, 卢自勇, 朱玲 , 等. 通过品种选择降低稻米对总汞和甲基汞的吸收. 环境科学与技术, 2015,38(7):28-32,37.
[17] 杜彩艳, 张乃明, 雷宝坤 , 等 . 不同玉米(Zea mays)品种对镉锌积累与转运的差异研究. 农业环境科学学报, 2017,36(1):16-23.
[18] Hussain A, Larsson H, Kuktaite R , et al. Concentration of some heavy metals in organically grown primitive,old and modern wheat genotypes:Implications for human health, Journal of Environmental Science and Health:Part B, 2012,47:751-758.
doi: 10.1080/03601234.2012.669337
[19] 赵云云, 钟彩霞, 方小龙 , 等. 华南地区11个春播大豆品种抗镉性的差异. 华南农业大学学报, 2014,35(3):111-113.
doi: 10.7671/j.issn.1001-411x.2014.03.020
[20] Wu F, Dong J, Qian Q , et al. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere, 2005,60:1437-1446.
doi: 10.1016/j.chemosphere.2005.01.071
[21] Fu X, Dou C, Chen Y , et al. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. Journal of Hazardous Materials, 2011,186:103-107.
doi: 10.1016/j.jhazmat.2010.10.122 pmid: 21130570
[22] Pittman J K . Managing the manganese:molecular mechanisms of manganese transport and homeostasis. New Phytologist, 2005,167(3):733-742.
doi: 10.1111/j.1469-8137.2005.01453.x pmid: 16101910
[23] Weigel H J, Jäger H J . Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiology, 1980,65:480-482.
doi: 10.1104/pp.65.3.480 pmid: 16661218
[24] Wang X, Liu Y O, Zeng G M , et al. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environmental and Experimental Botany, 2008,62:389-395.
doi: 10.1016/j.envexpbot.2007.10.014
[25] He J Y, Zhu C, Ren Y F , et al. Uptake,subcellular distribution,and chemical forms of cadmium in wild-type and mutant rice. Pedosphere, 2008,18:371-377.
doi: 10.1016/S1002-0160(08)60027-2
[26] Parrotta L, Guerriero G, Sergeant K , et al. Target or barrier? The cell wall of early-and later-diverging plants vs cadmium toxicity:differences in the response mechanisms. Frontiers in Plant Science, 2015,6:1-16.
[27] Wu F, Qian Q, Zhang G . Genotypic differences in effect of cadmium on growth parameters of barley during ontogenesis. Communications in Soil Science and Plant Analysis, 2003,34:2021-2034.
doi: 10.1081/CSS-120023234
[28] Xin J, Huang B . Subcellular distribution and chemical forms of cadmium in two hot pepper cultivars differing in cadmium accumulation. Journal of Agricultural and Food Chemistry, 2014,62:508-515.
doi: 10.1021/jf4044524
[29] Ma J, Cai H, He C , et al. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytologist, 2015,206:1063-1074.
doi: 10.1111/nph.2015.206.issue-3
[30] Meyer C L, Juraniec M, Huguet S , et al. Intraspecific variability of cadmium tolerance and accumulation,and cadmium-induced cell wall modifications in the metal hyperaccumulator Arabidopsis halleri. Journal of Experimental Botany, 2015,66:3215-3217.
doi: 10.1093/jxb/erv144
[31] Wang P, Deng X J, Huang Y , et al. Comparison of subcellular distribution and chemical forms of cadmium among four soybean cultivars at young seedlings. Environmental Science and Pollution Research, 2015,24(22):19584-19595.
[32] Van Assche F, Clijsters H . Effect of metals on enzyme activities in plants. Plant Cell & Environment, 1990,13(3):195-206.
[33] Hossain Z, Hajika M, Komatsu S . Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids, 2012,6(43):2393-2416.
[34] 张利红, 李雪梅, 陈强 , 等. 铅对不同品种玉米幼苗抗氧化酶活性及根系活力的影响. 吉林农业大学学报, 2006,28(2):119-122.
doi: 10.3969/j.issn.1000-5684.2006.02.001
[35] 杨昱, 秦樊鑫 . 铜胁迫对大豆幼苗抗氧化系统的影响. 作物杂志, 2014(1):81-85.
doi: 10.3969/j.issn.1001-7283.2014.01.019
[36] Czerpak R, Piotrowska A, Szleska K . Jasmonic acid affects changes in the growth and some components content in alga Chlorella vulgaris. Acta Physiologiae Plantarum, 2006,28:195-203.
doi: 10.1007/BF02706531
[37] Sinha S, Gupta A K . Translocation of metals from fly ash amended soil in the plant of Sesbania cannabina L. Ritz:effect on antioxidants. Chemosphere, 2005,61:1204-1214.
doi: 10.1016/j.chemosphere.2005.02.063
[38] Singh S, Sinha S . Accumulation of metals and its effects in Brassica juncea (L.) Czern. (cv. Rohini) grown on various amendments of tannery waste. Ecotoxicology and Environmental Safety, 2005,62:118-127.
doi: 10.1016/j.ecoenv.2004.12.026
[39] Sinha S, Saxena R . Effect of iron on lipid peroxidation,and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere, 2006,62, 1340-1350.
doi: 10.1016/j.chemosphere.2005.07.030
[40] Ishikawas, Suzuin, Ito-tanabatas , et al. Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using position-emitting 107 Cd tracer. BMC Plant Biology, 2011,11(1):1-12.
doi: 10.1186/1471-2229-11-1
[41] Ahsan N, Nakamura T, Komatsu S . Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd)-accumulating soybean cultivars under Cd stress. Amino Acids, 2012,42:317-327.
doi: 10.1007/s00726-010-0809-7
[42] Semane B, Dupae J, Cuypers A , et al. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. Journal of Plant Physiology, 2010,167:247-254.
doi: 10.1016/j.jplph.2009.09.015 pmid: 20005002
[43] Hradilova´ J, Rehulka P, Rehulkova´ H , et al. Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis, 2010,31:421-431.
doi: 10.1002/elps.200900477 pmid: 20084635
[44] Kieffer P, Dommes J, Hoffmann L , et al. Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics, 2008,8:2514-2530.
doi: 10.1002/pmic.200701110 pmid: 18563750
[45] Grill E, Löffler S, Winnacker E L , et al. Phytochelatins,the heavy-metal-binding peptides of plants,are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences of the United States of America, 1989,86:6838-6842.
doi: 10.1073/pnas.86.18.6838
[46] 仲晓春, 陈京都, 郝心宁 . 水稻作物对重金属镉的积累、耐性机理以及栽培调控措施进展. 中国农学通报, 2015,31(36):1-5.
[47] 蔡悦 . 水稻耐镉的基因型差异及外源GSH缓解镉毒的机理研究. 杭州:浙江大学, 2010.
[48] 胡延玲, 张春华, 居婷 , 等. 镉胁迫下两种水稻GSH和GST应答差异的研究. 农业环境科学学报, 2009,28(2):305-310.
doi: 10.3321/j.issn:1672-2043.2009.02.015
[49] Giles N M, Giles G I, Jacob C . Multiple roles of cysteine in biocatalysis. Biochemical and Biophysical Research Communications, 2003,300:1-4.
doi: 10.1016/S0006-291X(02)02770-5 pmid: 12480511
[50] Ramesh G, Podila G K, Gay G , et al. Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Applied and Environmental Microbiology, 2009,75(8):2266-2274.
doi: 10.1128/AEM.02142-08
[51] Dominguez-Solis J R, Gutierrez-Alcala G, Romero L C , et al. The cytosolic O-acetylserine (thiol) lyase gene is regulated by heavy metals and can function in cadmium tolerance. Journal of Biological Chemistry, 2001,276:9297-9302.
doi: 10.1074/jbc.M009574200
[52] Cobbett C, Goldsbrough P . Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 2002,53:159-182.
doi: 10.1146/annurev.arplant.53.100301.135154
[53] Lee K, Bae D W, Kim S H , et al. Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. Journal of Plant Physiology, 2010,167:161-168.
doi: 10.1016/j.jplph.2009.09.006 pmid: 19853963
[54] Aina R, Labra M, Fumagalli P , et al. Thiolpeptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environmental and Experimental Botany, 2007,59:381-392.
doi: 10.1016/j.envexpbot.2006.04.010
[55] Sarry J E, Kuhn L, Ducruix C , et al. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics, 2006,6:2180-2198.
doi: 10.1002/(ISSN)1615-9861
[56] Roth U, von Roepenack-Lahaye E V, Clemens S , Proteome changes in Arabidopsis thaliana roots upon exposure to Cd 2+ . Journal of Experimental Botany, 2006,57:4003-4013.
doi: 10.1093/jxb/erl170 pmid: 17075075
[57] Rodriguez-Celma J, Rellan-Alvarez R, Abadia A , et al. Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots. Journal of Proteomics, 2010,73:1694-1706.
doi: 10.1016/j.jprot.2010.05.001 pmid: 20621698
[58] Durand T C, Sergeant K, Planchon S , et al. Acute metal stress in Populus tremula×P. alba (717-1B4 genotype):leaf and cambial proteome changes induced by cadmium 2+ . Proteomics, 2010,10:349-368.
doi: 10.1002/pmic.v10:3
[59] Kieffer P, Planchon S, Oufir M , et al. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves. Journal of Proteome Research, 2009,8:400-417.
doi: 10.1021/pr800561r
[60] Colangelo E P, Guerinot M L . Put the metal to the petal:metal uptake and transport throughout plants. Current Opinion in Plant Biology, 2006,9(3):322-330.
doi: 10.1016/j.pbi.2006.03.015 pmid: 16616607
[61] Williams L E, Mills R F . P(1B)-ATPases-an ancient family of transition metal pumps with diverse functions in plants. Trends in Plant Science, 2005,10:491-502.
doi: 10.1016/j.tplants.2005.08.008
[62] Kim D Y, Bovet L, Maeshima M , et al. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. The Plant Journal, 2007,50(2):207-218.
doi: 10.1111/j.1365-313X.2007.03044.x
[63] Nevo Y, Nelson N . The NRAMP family of metal-ion transporters. Biochimica et Biophysica Acta, 2006,7:609-620.
doi: 10.1016/j.bbamcr.2006.05.007 pmid: 16908340
[64] Xia J, Yamaji N, Kasai T , et al. Plasma membrane-localized transporter for aluminum in rice. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(43):18381-18385.
doi: 10.1073/pnas.1004949107
[65] Curie C, Cassin G, Couch D , et al. Metal movement within the plant:contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 2009,103(1):1-11.
doi: 10.1093/aob/mcn207
[66] Thomine S, Wang R, Ward J M , et al. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(9):4991-4996.
doi: 10.1073/pnas.97.9.4991
[67] Thomine S, Lelievre F, Debarbieux E , et al. AtNRAMP3,a multispecific vacuolar metal transporter involved in plant responses to iron deficiency. The Plant Journal, 2003,34(5):685-695.
doi: 10.1046/j.1365-313X.2003.01760.x
[68] Lanquar V, Lelievre F, Bolte S , et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. The EMBO Journal, 2005,24(23):4041-4051.
doi: 10.1038/sj.emboj.7600864
[69] Cailliatte R, Lapeyre B, Briat J F , et al. The NRAMP6 metal transporter contributes to cadmium toxicity. The Biochemical Journal, 2009,422(2):217-228.
doi: 10.1042/BJ20090655 pmid: 19545236
[70] Lanquar V, Ramos M S, Lelievre F , et al. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiology, 2010,152(4):1986-1999.
doi: 10.1104/pp.109.150946
[71] Cailliatte R, Schikora A, Briat J F , et al. High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. The Plant Cell, 2010,22(3):904-917.
doi: 10.1105/tpc.109.073023
[72] 周志波, 易亚科, 陈光辉 . 水稻Cd吸收、转运机理研究进展. 作物杂志, 2017(1):14-19.
[73] Huang B F, Xin J L, Dai H W , et al. Identification of low-Cd cultivars of sweet potato [Ipomoea batatas (L.) Lam.] after growing on Cd-contaminated soil:uptake and partitioning to the edible roots. Environmental Science and Pollution Research, 2015,22(15):11813-11821.
doi: 10.1007/s11356-015-4449-z
[74] Qin Q, Li X, Zhuang J , et al. Long-distance transport of cadmiun from roots to leaves of Solanum melongenal. Ecotoxicology, 2015,24(10):2224-2232.
doi: 10.1007/s10646-015-1546-1 pmid: 26407708
[75] Mendoza-czatl D G, Butko E, Springer F , et al. Identification of high levels of phytochelatins,glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant Journal, 2008,54(2):249-259.
doi: 10.1111/j.1365-313X.2008.03410.x
[76] Tanaka K, Fujimaki S, Fujiwara T , et al. Quantitative estimation of the contribution of the phloem in cadmium transport to grains in rice plants (Oryza sativa L.). Soil Science & Plant Nutrition, 2010,53:72-77.
[77] Uraguchi S, Mori S, Kuramata M , et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice. Journal of Experimental Botany, 2009,60:2677-2688.
doi: 10.1093/jxb/erp119
[78] Moustakas M, Eleftheriou E P, Ouzounidou G . Short-term effects of aluminium at alkaline pH on the structure and function of the photosynthetic apparatus. Photosynthetica, 1997,34:169-177.
doi: 10.1023/A:1006880205108
[79] 雷冬梅, 段昌群, 何锋 , 等. 不同蚕豆品种对铅污染的光合生理响应特征. 应用生态学报, 2006,17(6):1095-1098.
[80] 彭玉魁, 赵锁劳, 王波 . 陕西省大中城市郊区蔬菜矿物质元素及重金属元素含量研究. 西北农业学报, 2002,11(1):97-100.
doi: 10.7606/j.issn.1004-1389.2002.1.030
[81] Zurera-Cosano G, Moreno-Rojas R, Salmeron-Egea J , et al. Heavy metal uptake from greenhouse border soils for edible vegetables. Journal of the Science of Food and Agriculture, 1989,49(3):307-314.
doi: 10.1002/jsfa.2740490307
[82] 雷恩, 刘艳红 . 个旧矿区周边农田高产、重金属低积累玉米品种的筛选. 江苏农业科学, 2015,43(9):124-127.
[83] EPA. Mercury Study Report to Congress. Volume 1. Executive Summary. Environmental Protection Agency,Research Triangle Park,NC(United States), Office of Air Quality Planning and Standards, 1997.
[84] WHO. UN Committee Recommends New Dietary Intake Limits for Mercury.[2017-07-04].
[85] Grant C A, Clarke J M, Duguid S , et al. Selection and breeding of plant cultivars to minimize cadmium accumulation. Science of the Total Environment, 2008,390(2/3):301-310.
doi: 10.1016/j.scitotenv.2007.10.038 pmid: 18036635
[86] Wang J L, Yuan J G, Yang Z Y , et al. Variation in cadmium accumulation among 30 cultivars and cadmium subcellular distribution in 2 selected cultivars of water spinach (Ipomoea aquatica Forsk.). Journal of Agricultural and Food Chemistry, 2009,57(19):8942-8949.
doi: 10.1021/jf900812s
[87] 刘维涛, 周启星 . 不同土壤改良剂及其组合对降低大白菜镉和铅含量的作用. 环境科学学报, 2010,30(9):1846-1853.
[88] Guo X F, Wei Z B, Wu Q T , et al. Cadmium and zinc accumulation in maize grain as affected by cultivars and chemical fixation amendments. Pedosphere, 2011,21(5):650-656.
doi: 10.1016/S1002-0160(11)60167-7
[89] Uchimiya M, Lima I M, Thomas K K , et al. Immobilization of heavy metal ions (Cu ,Cd ,Ni ,and Pb ) by broiler litter-derived biochars in water and soil . Journal of Agricultural and Food Chemistry, 2010,58(9):5538-5544.
doi: 10.1021/jf9044217
[90] Jiang J, Xu R K, Jiang T Y, et al . Immobilization of Cu(Ⅱ),Pb(Ⅱ)and Cd(Ⅱ) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials, 2012,229-230:145-150.
doi: 10.1016/j.jhazmat.2012.05.086
[91] 王林, 秦旭, 徐应明 , 等. 污灌区镉污染菜地的植物阻隔和钝化修复研究. 农业环境科学学报, 2014,33(11):2111-2117.
doi: 10.11654/jaes.2014.11.006
[92] 周利强, 吴龙华, 骆永明 , 等. 有机物料对低积累水稻品种始穗期抗氧化酶活性和重金属积累的影响. 土壤, 2013,45(3):506-512.
[93] Yu H, Wang J L, Fang W , et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice. Science of the Total Environment, 2006,370:302-309.
doi: 10.1016/j.scitotenv.2006.06.013
[94] Liu J G, Qian M, Cai G L , et al. Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. Journal of Hazardous Materials, 2007,143:443-447.
doi: 10.1016/j.jhazmat.2006.09.057
[95] Hseu Z Y, Su S W, Lai H Y , et al. Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan:New aspects for food safety regulation and sustainable agriculture. Soil Science and Plant Nutrition, 2010,56(1):31-52.
doi: 10.1111/j.1747-0765.2009.00442.x
[96] 王萌 . 纳米修复剂对溶液中重金属的吸附机制及镉污染土壤修复效果. 北京:中国农业科学院, 2012.
[97] Chen T, Wu Y Y, Zhang X X , et al. Improvement of cadmium contaminated soils at Zhangshi irrigation area and prevention of pollution in rice. Environmental Science, 1980,1(5):7-11.
[98] Zheng S J, Hu A T . Effects of flooding on the transformation of cadmium fractions in contaminated soils. Acta Scientiae Circumstantiae, 1995,15(2):142-147.
[99] Ji X H, Liang Y C, Lu Y H , et al. The effect of water management on the mechanism and rate of uptake and accumulation of cadmium by rice growing in polluted paddy soil. Acta Ecologica Sinica, 2007,27(9):3930-3939.
[100] 华珞, 陈世宝, 白玲玉 , 等. 有机肥对镉锌污染土壤的改良效应. 农业环境保护, 1998,17(2):55-59,62.
[101] 周焱 . 加强肥料规范化管理控制蔬菜重金属污染. 环境污染与防治, 2003,25(5):281-282,285.
[102] 楼玉兰, 章永松, 林咸永 . 氮肥形态对污泥农用土壤中重金属活性及玉米对其吸收的影响. 浙江大学学报(农业与生命科学版), 2005,31(4):392-398.
doi: 10.3321/j.issn:1008-9209.2005.04.007
[103] 黄细花, 卫泽斌, 郭晓方 , 等. 套种和化学淋洗联合技术修复重金属污染土壤. 环境科学, 2010,31(12):3067-3074.
[104] 卫泽斌, 郭晓方, 丘锦荣 , 等. 间套作体系在污染土壤修复中的应用研究进展. 农业环境科学学报, 2010,29(S):267-272.
[105] Assuncao A G, Bookum W M, Nelissen H J M , et al. Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types. New Phytologist, 2003,159(2):411-419.
doi: 10.1046/j.1469-8137.2003.00819.x
[106] 蒋彬 . 超积累植物在治理土壤重金属污染中的应用. 昭通师范高等专科学校学报, 2002,24(5):32-34.
doi: 10.3969/j.issn.1008-9322.2002.05.009
[107] 黑亮, 吴启堂, 龙新宪 , 等. 东南景天和玉米套种对Zn污染污泥的处理效应. 环境科学, 2007,28(4):852-858.
doi: 10.3321/j.issn:0250-3301.2007.04.028
[108] 蒋成爱, 吴启堂, 吴顺辉 , 等. 东南景天与不同植物混作对土壤重金属吸收的影响. 中国环境科学, 2009,29(9):985-990.
[109] 于玲玲, 朱俊艳, 黄青青 , 等. 油菜-水稻轮作对作物吸收累积镉的影响. 环境科学与技术, 2014,37(1):1-6.
[110] 陈亮妹, 马友华, 王陈丝丝 , 等. 不同污染程度农田土壤重金属修复技术研究. 中国农学通报, 2016,32(32):94-99.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .