Crops ›› 2018, Vol. 34 ›› Issue (2): 11-16.doi: 10.16035/j.issn.1001-7283.2018.02.003
Previous Articles Next Articles
Jiang Yingfen,Wu Xinjie,Fei Weixin,Chen Fengxiang
[1] | 傅廷栋 . 杂交油菜的育种与利用. 武汉: 湖北科学技术出版社, 2000. |
[2] | 傅廷栋, 涂金星 . 油菜杂种优势利用的现状与展望.//刘后利. 作物育种学论丛. 北京: 中国农业大学出版社, 2002. |
[3] | 潘涛, 曾凡亚, 吴书惠 , 等. 甘蓝型低芥酸油菜雄性不育两用系的选育与利用研究. 中国油料, 1988(3):7-10. |
[4] | 侯国佐, 王华, 张瑞茂 . 甘蓝型油菜细胞核雄性不育材料117A的遗传研究.中国油料, 1990(2):9-13. |
[5] | 陈凤祥, 胡宝成, 李强生 , 等. 甘蓝型油菜细胞核不育材料9012A的发现与初步研究. 北京农业大学学报, 1993,19(s4):57-61. |
[6] | 陈凤祥, 胡宝成, 李成 , 等. 甘蓝型油菜隐性细胞核雄性不育完全保持系选育成功. 中国农业科学(研究通讯), 1995,28(5):94-95. |
[7] | 陈凤祥, 胡宝成, 李成 , 等. 甘蓝型油菜细胞核雄性不育性的遗传研究I.隐性核不育系9012A的遗传. 作物学报, 1998,24(4):431-438. |
[8] | Mariani C, De Beuekeleer M, Truetner J , et al. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 1990,347:737-741. |
[9] | Mariani C, Gossele V, De Beuekeleer M , et al. A chimaeric ribonuclease inhibitor gene restores fertility to male sterile plants. Nature, 1992,357:384-387. |
[10] |
易斌 . 甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆. 武汉:华中农业大学, 2008.
doi: 10.7666/d.y1659606 |
[11] |
顿小玲 . 甘蓝型油菜核不育系7365A恢复基因克隆和进化分析. 武汉:华中农业大学, 2013.
doi: 10.7666/d.Y2566300 |
[12] | 卢东林 . 分子标记辅助选择转育油菜高油酸隐性核不育系. 武汉:华中农业大学, 2015. |
[13] | 涂金星, 傅廷栋, 郑用链 . 甘蓝型油菜核不育材料育性基因的RAPD标记. 华中农业大学学报, 1997,16(2):112-117. |
[14] |
Yi B, Chen Y, Lei S , et al. Fine mapping of the recessive genie male-sterile gene (Bnms1) in Brassica napus L. Theoretical and Applied Genetics, 2006,113:643-650.
doi: 10.1007/s00122-006-0328-9 pmid: 16804725 |
[15] | Lei S, Yao X, Yi B , et al. Towards map-based cloning:fine mapping of a recessive genie male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theoretical and Applied Genetics, 2007,115:643-651. |
[16] |
曾芳琴 . 油菜S45AB隐性核不育分子机理与应用研究. 武汉:华中农业大学, 2010.
doi: 10.7666/d.Y2004703 |
[17] |
雷绍林 . 甘蓝型油菜隐性核不育恢复基因BnMS2的精细定位与候选基因鉴定. 武汉:华中农业大学, 2009.
doi: 10.7666/d.Y1805354 |
[18] | Yi B, Zeng F, Lei S , et al. Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant Journal, 2010,63:925-938. |
[19] | Chen Y, Lei S, Zhou Z , et al. Analysis of gene expression profile in pollen development of recessive genic male sterile Brassica napus L. line S45A. Plant Cell Reports, 2009,28:1363-1372. |
[20] | Qu C M, Fu F Y, Liu M , et al. Comparative transcriptome analysis of recessive male sterility (RGMS) in sterile and fertile Brassica napus Lines. Plos One, 2015,10(12):e0144118. |
[21] | Ji J, Yang L, Fang Z , et al. Recessive male sterility in cabbage (Brassica oleracea var. capitata) caused by loss of function of BoCYP704B1 due to the insertion of a LTR-retrotransposo. Theoretical and Applied Genetics, 2017,130(7):1441-1451. |
[22] | Dobritsa A A, Shrestha J, Morant M , et al. CYP704B1 is a long-chain fatty acid ω-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiology, 2009,151(2):574-589. |
[23] | Li H, Pinot F, Sauveplane V , et al. Cytochrome P450 family member CYP704B2 catalyzes the ω-Hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice. The Plant Cell, 2010,1:173-190. |
[24] | 侯国佐, 王华, 张瑞茂 . 甘蓝型油菜细胞核雄性不育材料117A的遗传研究. 中国油料, 1990(2):9-13. |
[25] | 董发明, 洪登峰, 刘平武 , 等. 甘蓝型油菜隐性细胞核雄性不育系9012AB遗传模式新释. 华中农业大学学报, 2010,29(3):262-267. |
[26] | 俎峰, 夏胜前, 顿小玲 , 等. 基于分子标记的油菜隐性核不育7-7365AB遗传模式探究. 中国农业科学, 2010,43(15):3067-3075. |
[27] | Xia S, Cheng L, Zu F , et al. Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers. Theoretical and Applied Genetics, 2012: 1-8. |
[28] |
Huang Z, Chen Y, Yi B , et al. Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theoretical and Applied Genetics, 2007,115(1):113-118.
doi: 10.1007/s00122-007-0547-8 pmid: 17479242 |
[29] |
He J, Ke L, Hong D , et al. Fine mapping of a recessive genic male sterility gene (Bnms3) in rapeseed (Brassica napus) with AFLP- and Arabidopsis-derived PCR markers. Theoretical and Applied Genetics, 2008,117(1):11-8.
doi: 10.1007/s00122-008-0747-x |
[30] | 江莹芬, 陈凤祥, 李强生 , 等. 甘蓝型油菜隐性上位互作核不育基因(Ms1)精细定位. 分子植物育种, 2011,9(5):599-604. |
[31] | Dun X, Zhou Z, Xia S , et al. BnaC.Tic40,a plastid inner membrane translocon originating from Brassica oleracea,is essential for tapetal function and microspore development in Brassica napus. The Plant Journal, 2011,68(3):532-45. |
[32] |
Li J, Hong D, He J , et al. Map-based cloning of a recessive genic male sterility locusin Brassica napus L. and development of its functional marker. Theoretical and Applied Genetics, 2012,125(2):223-234.
doi: 10.1007/s00122-012-1827-5 |
[33] | Xie Y, Hong D, Xu Z , et al. Identification of AFLP markers linked to the epistatic suppressor gene of a recessive genic male sterility in rapeseed and conversion to SCAR markers. Plant Breeding, 2007,27(2):145-149. |
[34] |
Xiao L, Yi B, Chen Y F , et al. Molecular markers linked to Bn;rf:a recessive epistatic inhibitor gene of recessive genic male sterility in Brassica napus L. Euphytica, 2008,164(2):377-384.
doi: 10.1007/s10681-008-9679-4 |
[35] | Xu Z, Xie Y, Hong D , et al. Fine mapping of the epistatic suppressor gene (esp) of a recessive genic male sterility in rapeseed (Brassica napus L.). Genome, 2009,52(9):755-760. |
[36] | 江莹芬, 陈凤祥, 胡宝成 , 等. 甘蓝型油菜隐性三系核不育上位基因Rf精细定位. 作物杂志, 2013(1):40-44. |
[37] | 程玲 . 甘蓝型油菜隐性细胞核不育恢复基因BnMs4的精细定位及候选区段确定. 武汉:华中农业大学, 2012. |
[38] | Deng Z, Li X, Wang Z , et al. Map based cloning reveals the complex organization of the BnRf locus and leads to the identification of BnRfb,a male sterility gene,in Brassica napus. Theoretical and Applied Genetics, 2016,129(1):53-64. |
[39] | Xia S, Wang Z, Zhang H , et al. Altered transcription and neofunctionalization of duplicated genes rescue the harmful effects of a chimeric gene in Brassica napus. The Plant Cell, 2016,28(9):2060-2078. |
[40] |
龙欢, 姚家玲, 涂金星 . 3种甘蓝型油菜雄性不育系花药发育的细胞学研究. 华中农业大学学报, 2005,24(6):570-575.
doi: 10.3321/j.issn:1000-2421.2005.06.008 |
[41] |
Vizcay-Barrena G, Wilson Z A . Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. Journal of Experimental Botany, 2006,11:2709-2717.
doi: 10.1093/jxb/erl032 pmid: 16908508 |
[42] |
Wu H, Cheung A Y . Programmed cell death in plant reproduction. Plant Molecular Biology, 2000,3:267-281.
doi: 10.1023/A:1026536324081 pmid: 11199388 |
[43] | Zhu Y, Dun X, Zhou Z , et al. A separation defect of tapetum cells and mierospore mother cells results in male sterility in Brassica napus:the role of abscisic acid in early anther development. Plant Molecular Biology, 2010,72:111-123. |
[44] |
万丽丽 . 油菜细胞核雄性不育的细胞学研究以及育性相关基因的克隆与功能分析. 武汉:华中农业大学, 2010.
doi: 10.7666/d.Y1805295 |
[45] | Dun X, Shen W, Hu K , et al. Neofunctionalization of duplicated Tic40 genes caused a gain of function variation related to male fertility in Brassica oleracea Lineages. Plant Physiology, 2014,166:1403-1419. |
[46] |
Wilson Z, Zhang D . From arabidopsis to rice:pathways in pollen development. Journal of Experimental Botany, 2009,5:1479-1492.
doi: 10.1093/jxb/erp095 pmid: 19321648 |
[1] | Dongfang Cai,Shufen Zhang,Jianping Wang,Junping He,Jinhua Cao,Yancheng Wen,Lei Zhao,Dongguo Wang,Jiacheng Zhu. Effects of Slow-Released Nitrogen Fertilizer Application on Photosynthetic Characteristics and Yield in Brassica napus (Fengyou 10) [J]. Crops, 2018, 34(2): 136-140. |
[2] | Mingzhi Yin,Chunyun Guan. Isozyme Analysis of a New Cytoplasmic Male Sterile Line 1193A and Its Maintain Line in Brassica napus [J]. Crops, 2016, 32(4): 36-40. |
|