Crops ›› 2019, Vol. 35 ›› Issue (5): 173-179.doi: 10.16035/j.issn.1001-7283.2019.05.028

Previous Articles     Next Articles

Hyperspectral Estimation of SPAD Values in Different Varieties of Autumn Maize

Hua Yuhui,Gao Zhiqiang   

  1. Agronomy College of Hunan Agricultural University, Changsha 410128, Hunan, China
  • Received:2019-04-01 Revised:2019-06-06 Online:2019-10-15 Published:2019-11-07
  • Contact: Zhiqiang Gao

Abstract:

By studying the correlation between SPAD value of different autumn maize leaves varieties and first derivative spectrum, the sensitive wavelengths and first derivative spectrum parameters of 8 autumn maize varieties were screened out, and linear, exponential, polynomial and first derivative spectrum parameters’ prediction models of SPAD value of different autumn maize varieties were established, and RMSE and RE of modeling set and verification set were calculated. The results showed that higher correlation between the SPAD value and the first derivative spectrum of different autumn maize varieties, which reached more than 0.8. The sensitive bands of different autumn maize varieties in first derivative spectrum are between 650-680nm. The SPAD value prediction model based on the sensitive wavelength performed well, especially by the polynomial model, but its estimation accuracy was different among the varieties. Among the 8 varieties of autumn maize, the prediction model of Zhengda 999 had the best performance, its modeling set RMSE and RE were 2.762 and 3.643%, respectively, and its verification set RMSEv and REv were 3.322 and 4.518%, respectively.

Key words: Autumn maize, SPAD value, Spectrum, Estimation model

Fig.1

Changes of SPAD value of different autumn maize varieties"

Fig.2

Changes of spectrum reflectance and first derivative spectrum of different autumn maize varieties"

Fig.3

The correlation coefficient between SPAD value and first derivative spectrum of different autumn maize varieties"

Table 1

Coefficient of determination of first derivative spectrum and spectrum parameters with SPAD value of different autumn maize varieties"

双兴玉2号Shuangxingyu No.2 正大999 Zhengda 999 湘农玉27号Xiangnongyu No.27 兴玉818 Xingyu 818
参数Parameter R2 参数Parameter R2 参数Parameter R2 参数Parameter R2
R′491 0.453** R′483 0.346** R′490 0.317** R′499 0.053*
R′625 0.403** R′635 0.387** R′628 0.384** R′624 0.352**
R′671 0.729** R′671 0.906** R′673 0.861** R′667 0.721**
R′728 0.301** R′714 0.112* R′738 0.564** R′739 0.101*
NDSI (R′491,R′625) 0.003 NDSI (R′483,R′635) 0.277** NDSI (R′490,R′628) 0.000 NDSI (R′499,R′624) 0.006
NDSI (R′491,R′671) 0.681** NDSI (R′483,R′671) 0.237** NDSI (R′490,R′673) 0.489** NDSI (R′499,R′667) 0.654**
NDSI (R′491,R′728) 0.325** NDSI (R′483,R′714) 0.188 NDSI (R′490,R′738) 0.299** NDSI (R′499,R′739) 0.362**
NDSI (R′625,R′671) 0.005 NDSI (R′635,R′671) 0.084 NDSI (R′628,R′673) 0.013 NDSI (R′624,R′667) 0.012
NDSI (R′625,R′728) 0.413** NDSI (R′635,R′714) 0.229** NDSI (R′628,R′738) 0.411** NDSI (R′624,R′739) 0.400**
NDSI (R′671,R′728) 0.681** NDSI (R′671,R′714) 0.787** NDSI (R′673,R′738) 0.443** NDSI (R′667,R′739) 0.734**
RSI (R′491,R′625) 0.022 RSI (R′483,R′635) 0.001 RSI (R′490,R′628) 0.001 RSI (R′499,R′624) 0.001
RSI (R′491,R′671) 0.089 RSI (R′483,R′671) 0.000 RSI (R′490,R′673) 0.055 RSI (R′499,R′667) 0.080
RSI (R′491,R′728) 0.056 RSI (R′483,R′714) 0.001 RSI (R′490,R′738) 0.049 RSI (R′499,R′639) 0.011
RSI (R′625,R′671) 0.642** RSI (R′635,R′671) 0.413** RSI (R′628,R′673) 0.607** RSI (R′624,R′667) 0.644**
RSI (R′625,R′728) 0.335** RSI (R′635,R′714) 0.251** RSI (R′628,R′738) 0.461** RSI (R′624,R′739) 0.330**
RSI (R′671,R′728) 0.017 RSI (R′671,R′714) 0.706** RSI (R′673,R′738) 0.450** RSI (R′667,R′739) 0.002
DSI (R′491,R′625) 0.280** DSI (R′491,R′625) 0.016 DSI (R′490,R′628) 0.158* DSI (R′499,R′624) 0.246**
DSI (R′491,R′671) 0.503** DSI (R′491,R′671) 0.861** DSI (R′490,R′673) 0.702** DSI (R′499,R′667) 0.568**
DSI (R′491,R′728) 0.222** DSI (R′491,R′714) 0.040 DSI (R′490,R′738) 0.552** DSI (R′499,R′739) 0.101*
DSI (R′625,R′671) 0.453** DSI (R′625,R′671) 0.827** DSI (R′628,R′673) 0.793** DSI (R′624,R′667) 0.643**
DSI (R′625,R′728) 0.151* DSI (R′625,R′714) 0.043 DSI (R′628,R′738) 0.532** DSI (R′624,R′739) 0.060
DSI (R′671,R′728) 0.062 DSI (R′671,R′714) 0.008 DSI (R′673,R′738) 0.466** DSI (R′667,R′739) 0.035
临奥1号B3 Lin′ao No.1 B3 湘农玉32号Xiangnongyu No.32 洛玉1号Luoyu No.1 田玉335 Tianyu 335
参数Parameter R2 参数Parameter R2 参数Parameter R2 参数Parameter R2
R′549 0.345** R′553 0.332** R′539 0.801** R′551 0.325**
R′624 0.598** R′633 0.206** R′610 0.853** R′634 0.471**
R′671 0.608** R′677 0.524** R′654 0.819** R′677 0.217**
R′739 0.752** R′729 0.136* R′740 0.883** R′723 0.545**
NDSI (R′549,R′624) 0.003 NDSI (R′553,R′633) 0.000 NDSI (R′539,R′610) 0.001 NDSI (R′551,R′634) 0.591**
NDSI (R′549,R′671) 0.127* NDSI (R′553,R′677) 0.274** NDSI (R′539,R′654) 0.021 NDSI (R′551,R′677) 0.359**
NDSI (R′549,R′739) 0.004 NDSI (R′553,R′729) 0.116* NDSI (R′539,R′740) 0.420** NDSI (R′551,R′723) 0.591**
NDSI (R′624,R′671) 0.011 NDSI (R′633,R′677) 0.248** NDSI (R′610,R′654) 0.717** NDSI (R′634,R′677) 0.037
NDSI (R′624,R′739) 0.042 NDSI (R′633,R′729) 0.056 NDSI (R′610,R′740) 0.436** NDSI (R′634,R′723) 0.082
NDSI (R′671,R′739) 0.662** NDSI (R′677,R′729) 0.733** NDSI (R′654,R′740) 0.735** NDSI (R′677,R′723) 0.813**
RSI (R′549,R′624) 0.005 RSI (R′553,R′633) 0.000 RSI (R′539,R′610) 0.014 RSI (R′551,R′634) 0.007
RSI (R′549,R′671) 0.010 RSI (R′553,R′677) 0.428** RSI (R′539,R′654) 0.586** RSI (R′551,R′677) 0.007
RSI (R′549,R′739) 0.009 RSI (R′553,R′729) 0.126* RSI (R′539,R′740) 0.426** RSI (R′551,R′723) 0.007
RSI (R′624,R′671) 0.678** RSI (R′633,R′677) 0.389** RSI (R′610,R′654) 0.737** RSI (R′634,R′677) 0.455**
RSI (R′624,R′739) 0.435** RSI (R′633,R′729) 0.049 RSI (R′610,R′740) 0.552** RSI (R′634,R′723) 0.087
RSI (R′671,R′739) 0.020 RSI (R′677,R′729) 0.517** RSI (R′654,R′740) 0.004 RSI (R′677,R′723) 0.731**
DSI (R′549,R′624) 0.475** DSI (R′553,R′633) 0.029 DSI (R′539,R′610) 0.655** DSI (R′551,R′634) 0.069
DSI (R′549,R′671) 0.768** DSI (R′553,R′677) 0.832** DSI (R′539,R′654) 0.793** DSI (R′551,R′677) 0.856**
DSI (R′549,R′739) 0.366** DSI (R′553,R′729) 0.368** DSI (R′539,R′740) 0.256** DSI (R′551,R′723) 0.350**
DSI (R′624,R′671) 0.705** DSI (R′633,R′677) 0.813** DSI (R′610,R′654) 0.000 DSI (R′634,R′677) 0.814**
DSI (R′624,R′739) 0.325** DSI (R′633,R′729) 0.373** DSI (R′610,R′740) 0.136* DSI (R′634,R′723) 0.351**
DSI (R′671,R′739) 0.212** DSI (R′677,R′729) 0.157* DSI (R′654,R′740) 0.130* DSI (R′677,R′723) 0.045

Table 2

Predictive model and coefficient of determination of SPAD value of different autumn maize varieties"

品种
Variety
模型Model
一元线性模型
Linear model
R2 指数模型
Exponential model
R2 多项式模型
Polynomial model
R2
双兴玉2号Shuangxingyu No.2 y=38660x+46.774 0.731 y=46.66e704.24x 0.737 y=-19533118x2+48050.806x+46.482 0.737
正大999 Zhengda 999 y=34262x+36.096 0.861 y=39.224e591.41x 0.860 y=14888708x2+15133.378x+41.232 0.886
湘农玉27号Xiangnongyu No.27 y=77172x+30.210 0.907 y=34.932e1336.9x 0.908 y=92891892x2+11627.991x+39.552 0.913
兴玉818 Xingyu 818 y=54077x+54.495 0.721 y=53.95e913.14x 0.710 y=-30808871x2+62332.558x+54.681 0.730
临奥1号B3 Lin′ao No.1 B3 y=38823x+49.368 0.800 y=49.831e634.56x 0.797 y=-4207729x2+41629.656x+49.108 0.801
湘农玉32号Xiangnongyu No.32 y=30562x+39.597 0.801 y=42.769e487.93x 0.853 y=16960342x2+4942.054x+47.636 0.843
洛玉1号Luoyu No.1 y=111055x+77.22 0.869 y=80.587e1984x 0.842 y=96303678x2+148021.766x+80.146 0.825
田玉335 Tianyu 335 y=33687x+34.605 0.883 y=38.05e580.92x 0.879 y=-12646105x2+52181.083x+29.068 0.888

Table 3

Linear regression model coefficient of determination of first derivative spectum parameters of different autumn maize varieties"

品种Variety 光谱参数模型
Spectum paramter model
R2
双兴玉2号Shuangxingyu No.2 y=-10.951x+57.295 0.681
正大999 Zhengda 999 y=31517.7x+38.273 0.861
湘农玉27号Xiangnongyu No.27 y=86746.221x+18.798 0.793
兴玉818 Xingyu 818 y=136.176x+190.901 0.734
临奥1号B3 Lin′ao No.1 B3 y=31211.09x+54.037 0.768
湘农玉32号Xiangnongyu No.32 y=26016.52x+54.037 0.832
洛玉1号Luoyu No.1 y=530.47.443x+91.222 0.793
田玉335 Tianyu 335 y=29300.613x+35.924 0.856

Table 4

Modeling and testing results under different models of SPAD value of different autumn maize varieties"

品种Variety 模型
Model
建模集
Modeling set
验证集
Verification set
RMSE RE (%) RMSEv REv (%)
双兴玉2号 一元线性Linear 4.825 6.976 4.114 5.845
Shuangxingyu No.2 指数Exponential 4.936 6.860 4.403 5.833
多项式Polynomial 4.773 6.814 3.924 5.803
NDSI (R′491,R′671) 5.031 7.618 4.327 5.615
正大999 一元线性Linear 2.851 3.666 3.112 4.050
Zhengda 999 指数Exponential 2.776 3.632 3.245 4.360
多项式Polynomial 2.762 3.643 3.322 4.518
DSI (R′491,R′671) 2.749 3.619 4.151 5.066
湘农玉27号 一元线性Linear 4.849 7.298 5.350 6.569
Xiangnongyu No.27 指数Exponential 4.393 6.642 7.285 8.478
多项式Polynomial 4.272 6.433 8.613 9.695
DSI (R′628,R′673) 5.051 7.782 7.501 9.127
兴玉818 一元线性Linear 5.100 6.701 4.421 6.097
Xingyu 818 指数Exponential 5.310 6.720 4.724 6.449
多项式Polynomial 5.019 6.779 4.620 6.128
NDSI (R′667,R′739) 5.132 6.635 4.432 6.004
临奥1号B3 一元线性Linear 4.240 5.134 4.172 5.357
Lin′ao No.1 B3 指数Exponential 4.304 5.120 4.110 5.060
多项式Polynomial 4.237 5.110 4.202 5.457
DSI (R′549,R′671) 4.361 5.126 4.190 5.553
湘农玉32号 一元线性Linear 3.880 5.055 3.795 4.564
Xiangnongyu No.32 指数Exponential 3.758 4.894 3.757 4.537
多项式Polynomial 3.672 4.805 3.949 4.658
DSI (R′553,R′677) 3.897 4.858 3.717 4.342
洛玉1号 一元线性Linear 4.179 5.202 9.062 9.308
Luoyu No.1 指数Exponential 4.138 5.140 7.529 8.258
多项式Polynomial 4.123 5.061 7.465 8.098
DSI (R′539,R′654) 4.570 6.303 5.722 7.731
田玉335 一元线性Linear 3.703 4.473 4.008 5.118
Tianyu 335 指数Exponential 3.867 4.559 4.240 5.443
多项式Polynomial 3.629 4.603 3.923 4.913
DSI (R′551,R′677) 3.630 4.379 4.054 5.163
[1] 余蛟洋, 常庆瑞, 由明明 , 等. 基于高光谱和BP神经网络模型苹果叶片SPAD值遥感估算. 西北林学院学报, 2018,33(2):157-164.
[2] 孙小香, 王芳东, 郭熙 , 等. 基于水稻冠层高光谱的叶片SPAD值估算模型研究. 江西农业大学学报, 2018,40(3):444-453.
[3] 艾天成, 李方敏, 周治安 , 等. 作物叶片叶绿素含量与SPAD值相关性研究. 湖北农学院学报, 2000,20(1):6-8.
[4] 李哲, 张飞, 陈丽华 , 等. 光谱指数的植物叶片叶绿素含量估算模型. 光谱学与光谱分析, 2018,38(5):1533-1539.
[5] 赵士诚, 何萍, 仇少君 , 等. 相对SPAD值用于不同品种夏玉米氮肥管理的研究. 植物营养与肥料学报, 2011,17(5):1091-1098.
doi: 10.11674/zwyf.2011.1059
[6] 孙红, 赵毅, 张猛 , 等. 玉米拔节期冠层叶绿素含量多光谱图像检测. 农业工程学报, 2015(S2):186-192.
[7] 徐新刚, 赵春江, 王纪华 , 等. 基于可见光-近红外新光谱特征和最优组合原理的大麦叶片氮含量监测. 红外与毫米波学报, 2013,32(4):351-358,365.
[8] 吴启侠, 李晋波, 朱建强 , 等. 淹水胁迫下棉花叶片SPAD高光谱估算模型研究. 棉花学报, 2017(6):579-588.
[9] 王磊 . 玉米营养光谱诊断技术研究. 北京:中国农业科学院, 2007.
[10] 李振 . 基于高光谱玉米氮素营养与生长指标的监测. 济南:山东农业大学, 2012.
[11] He R, Li H, Qiao X , et al. Using wavelet analysis of hyperspectral remote-sensing data to estimate canopy chlorophyll content of winter wheat under stripe rust stress. International Journal of Remote Sensing, 2018,39(12):4059-4076.
[12] Li L, Ren T, Ma Y , et al. Evaluating chlorophyll density in winter oilseed rape (Brassica napus L.) using canopy hyperspectral red-edge parameters. Computers and Electronics in Agriculture, 2016,126:21-31.
[13] 张春雷 . 玉米成为我国第一大粮食作物品种. 农产品市场周刊, 2012(47):12.
[14] 李媛媛 . 基于地物光谱仪与成像光谱仪耦合的玉米生长信息监测研究. 杨凌:西北农林科技大学, 2017.
[15] 贺英, 邓磊, 毛智慧 , 等. 基于数码相机的玉米冠层SPAD遥感估算. 中国农业科学, 2018,51(15):66-77.
[16] 王丽凤, 张长利, 赵越 , 等. 高光谱成像技术的玉米叶片氮含量检测模型. 农机化研究, 2017,39(11):140-147.
[17] 付彦博, 王治国, 耿庆龙 , 等. 基于光谱分析不同温度下棉花叶片SPAD值含量估测. 新疆农业科学, 2017,54(3):409-416.
[18] 陈春玲, 金彦, 曹英丽 , 等. 基于GA-BP神经网络高光谱反演模型分析玉米叶片叶绿素含量. 沈阳农业大学学报, 2018,49(5):626-632.
[19] 于雷, 章涛, 朱亚星 , 等. 基于IRIV算法优选大豆叶片高光谱特征波长变量估测SPAD值. 2018,34(16):148-154.
[20] 高鑫, 高聚林, 于晓芳 , 等. 基于不同玉米品种叶片高光谱的SPAD值估测模型研究. 玉米科学, 2016(2):108-114.
[21] 高佳, 崔海岩, 史建国 , 等. 花粒期光照对夏玉米光合特性和叶绿体超微结构的影响. 应用生态学报, 2018,29(3):883-890.
[22] 武倩雯, 熊黑钢, 靳彦华 , 等. 基于多个高光谱参数的玉米叶片叶绿素含量估测模型. 干旱地区农业研究, 2016,34(1):202-205.
[23] 李敏夏, 张林森, 李丙智 , 等. 苹果叶片高光谱特性与叶绿素含量和SPAD值的关系. 西北林学院学报, 2010,25(2):35-39.
[24] 李俊霞, 杨俐苹, 白由路 , 等. 不同品种玉米氮含量与叶片光谱反射率及SPAD值的相关性. 中国土壤与肥料, 2015(3):34-39.
[25] 李媛媛, 常庆瑞, 刘秀英 , 等. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算. 农业工程学报, 2016,32(16):135-141.
[26] Chen Z Q, Wang L, Bai Y L , et al. Hyperspectral prediction model for maize leaf SPAD in the whole growth period. Spectroscopy and Spectral Analysis, 2013,33(10):2838-2842.
[27] 王飞, 宋希云, 刘树堂 , 等. 水肥耦合下夏玉米不同生育时期的高光谱特性与反演模型研究. 植物生理学报, 2014,50(3):358-363.
[1] Kainan Zhao, Xuhong Chang, Demei Wang, Zhiqiang Tao, Yushuang Yang, Ruiqi Ma, Yingjie Zhu, Zheli Xu, Baojun Zhang, Guangcai Zhao. Effects of Tridimensional Uniform Sowing and Fertilizer on Grain and Physiological Characteristics of Winter Wheat [J]. Crops, 2019, 35(1): 103-110.
[2] Chen Yingying,Wangxu Yiling,Zhu Yuhan,Wu Wei,Liu Tao,Sun Chengming. Hyperspectral Estimation of Nitrogen Content in Rice Panicle [J]. Crops, 2018, 34(5): 116-120.
[3] Zhongnan Li,Kewei Wang,Yueren Wang,Shenghui Wu,Guangfa Li. Genetic Analysis on Chlorophyll SPAD Value of Seedling Leaf in Maize Variety Xianyu 335 [J]. Crops, 2016, 32(4): 101-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato[J]. Crops, 2019, 35(5): 114 -119 .
[3] Ren Yongfeng,Lu Zhanyuan,Zhao Peiyi,Gao Yu,Liu Guanghua,Li Yanfang. Effects of Different Planting Methods on Water Utilization and Yield of Potato in Dryland[J]. Crops, 2019, 35(5): 120 -124 .
[4] Shi Liran,Hao Hongbo,Cui Haiying,Li Mingzhe. Effects of Shading on Photosynthetic Characteristics and Rapid Chlorophyll Fluorescence Kinetic Characteristics of Foxtail Millet[J]. Crops, 2019, 35(5): 125 -128 .
[5] Li Chunxi,Li Sisi,Shao Yun,Ma Shouchen,Liu Qing,Weng Zhengpeng,Li Xiaobo. Effects of Organic Materials Returning on Enzyme Activities and Soil Carbon and Nitrogen Content in Wheat Field under Nitrogen-Reducing Conditions[J]. Crops, 2019, 35(5): 129 -134 .
[6] Liang Xiaohong,Zhang Ruidong,Huang Minjia,Liu Jing,Cao Xiong. Interaction of Film Mulching and Nitrogen Application on Yield, Water and Nitrogen Use Efficiency of Sorghum[J]. Crops, 2019, 35(5): 135 -142 .
[7] Chen Li,Zhang Luxin,Wu Feng,Li Zhen,Long Xingzhou,Yang Yurui,Yin Baozhong. Effects of Wheat-Maize Double Crops Rotational Tillage on Soil Characteristics and Crop Yield in Hebei Plain[J]. Crops, 2019, 35(5): 143 -150 .
[8] Jiang Lina,Zhang Yawen,Zhu Yalin,Zhao Lingxiao. Effects of Nitrogen Application on Dry Matter Accumulation, Transport and Yield in Different Wheat Varieties[J]. Crops, 2019, 35(5): 151 -158 .
[9] Dong Zhiqiang,Wang Mengmeng,Li Hongyi,Xue Xiaoping,Pan Zhihua,Hou Yingyu,Chen Chen,Li Nan,Li Manhua. Applicability Assessment of WOFOST Model of Growth and Yield of Summer Maize in Shandong Province[J]. Crops, 2019, 35(5): 159 -165 .
[10] Wang Jinsong,Dong Erwei,Jiao Xiaoyan,Wu Ailian,Bai Wenbin,Wang Lige,Guo Jun,Han Xiong,Liu Qingshan. Effects of Different Planting Patterns on Yield and Nutrient Absorption of Sorghum Jinnuo 3[J]. Crops, 2019, 35(5): 166 -172 .