Crops ›› 2020, Vol. 36 ›› Issue (3): 53-59.doi: 10.16035/j.issn.1001-7283.2020.03.009

Previous Articles     Next Articles

The Difference of Seed Germination in Different Cotton Genotypes in Response to Copper Stress

Yuan Changkai, Luo Haihua, Chen Gong, Gao Xin, Peng Jinjian, Xiang Chunling, Yin Mengyao, Wang Peipei, Xu Lanlan, Tang Feiyu()   

  1. College of Agronomy, Jiangxi Agricultural University/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, Jiangxi, China
  • Received:2019-11-11 Revised:2020-03-01 Online:2020-06-15 Published:2020-06-10
  • Contact: Feiyu Tang E-mail:fytangcau@163.com

Abstract:

It is of great significance for increasing the usage of cultivated land and the income of cotton producers to grow cotton in the copper-polluted soil, but the effect of copper stress on the germination of cotton seeds remains unclear. Seven cotton varieties (lines) were evaluated to a seed germination experiment where seeds were incubated in the solution with four different Cu2+ concentration (0, 10, 100 and 2 000μmol/L). The germination rate, seedling fresh weight, root length and shoot length were recorded on ten days after seed incubation. The tolerance index and subordinate function analyses were applied to assess the difference in tolerance capacity to copper toxicity among seven cotton genotypes. The results showed that seedling fresh weight, root length and shoot length decreased with the increasing of Cu2+ concentration over the range of 10 to 2 000μmol/L. The reduction of root length due to copper stress was greater than that of shoot length. The tolerance ability to copper stress of seed germination could be well distinguished at low-middle ion levels among these genotypes. Among the seven cotton varieties (lines), Ekangmian 10 ranked first and SGK321 at the end in the terms of tolerance index and subordinate function value. It has been concluded that Ekangmian 10 is a copper resistant genotype and SGK321 is a sensitive genotype to copper stress.

Key words: Cotton (Gossypium hirsutum L.), Copper stress, Seed germination, Tolerance index, Subordinate function

Table 1

Effects of copper stress on seed germination percentage in different cotton genotypes %"

Cu2+浓度
Cu2+ concentration
(μmol/L)
2870 鲁7619
Lu 7619
鲁301
Lu 301
A409 CN01 鄂抗棉10号Ekangmian 10 SGK321
GP IGP GP IGP GP IGP GP IGP GP IGP GP IGP GP IGP
0 55a - 76a - 35a - 83a - 45b - 69a - 61b -
10 49a 11.36 73a 4.69 40a -14.29 81a 1.52 35b 22.22 40b 41.82 63b -2.04
100 46a 15.91 83a -8.33 50a -42.86 83a 0.00 45b 0.00 48b 29.70 63b -3.40
2 000 58a -4.55 83a -8.33 40a -14.29 74a 10.61 71a -58.33 51b 25.45 74a -20.41

Table 2

Effects of copper stress on the seedling fresh weight in different cotton genotypes g"

Cu2+浓度
Cu2+ concentration (μmol/L)
2870 鲁7619
Lu 7619
鲁301
Lu 301
A409 CN01 鄂抗棉10号
Ekangmian 10
SGK321
0 0.6342a 0.6258a 0.7158a 0.6153a 0.5897a 0.6298a 0.6220a
10 0.5452b 0.4675b 0.5722b 0.5805a 0.5665a 0.5760a 0.5035b
100 0.4454c 0.4330b 0.4267c 0.4357b 0.3682b 0.4711b 0.3787c
2 000 0.2819d 0.2802c 0.2226d 0.2651c 0.2641c 0.2953c 0.2577d

Table 3

Effects of copper stress on the root length of seedling in different cotton genotypes"

Cu2+浓度
Cu2+ concentration
(μmol/L)
2870 鲁7619
Lu 7619
鲁301
Lu 301
A409 CN01 鄂抗棉10号
Ekangmian 10
SGK321
RL
(cm)
IPRL
(%)
RL
(cm)
IPRL
(%)
RL
(cm)
IPRL
(%)
RL
(cm)
IPRL
(%)
RL
(cm)
IPRL
(%)
RL
(cm)
IPRL
(%)
RL
(cm)
IPRL
(%)
0 7.34a - 8.04a - 8.53a - 7.80a - 6.97a - 7.08a - 10.83a -
10 3.50b 52.3 6.37b 20.8 3.41b 60.1 4.20b 46.1 5.63b 19.3 5.98b 15.5 3.30b 69.5
100 1.90c 74.1 3.99c 50.4 1.95c 77.2 2.00c 74.4 3.83c 45.0 4.17c 41.1 2.09c 80.7
2 000 0.85d 88.4 0.74d 90.8 0.57d 93.3 0.98d 87.4 0.81d 88.4 0.75d 89.4 1.02d 90.5

Table 4

Effects of copper stress on the shoot length of seedling in different cotton genotypes"

Cu2+浓度
Cu2+ concentration
(μmol/L)
2870 鲁7619
Lu 7619
鲁301
Lu 301
A409 CN01 鄂抗棉10号
Ekangmian 10
SGK321
SL
(cm)
IPSL
(%)
SL
(cm)
IPSL
(%)
SL
(cm)
IPSL
(%)
SL
(cm)
IPSL
(%)
SL
(cm)
IPSL
(%)
SL
(cm)
IPSL
(%)
SL
(cm)
IPSL
(%)
0 7.45a - 7.90a - 8.70a - 8.63a - 7.78a - 7.37a - 8.16a -
10 6.38b 14.4 6.68b 15.5 7.75b 10.8 7.79b 9.7 6.98b 10.2 7.34a 0.4 7.13b 12.5
100 5.44c 26.7 5.75c 27.2 5.68c 34.7 6.38c 18.1 4.95c 36.3 6.12b 16.9 5.37c 34.1
2 000 2.20d 70.5 3.19d 59.6 2.08d 76.0 2.14d 72.4 2.41d 69.0 2.52c 65.8 2.18d 73.3

Table 5

Tolerance indexes of different cotton genotypes at different Cu2+ levels"

基因型Genotype 10μmol/L 100μmol/L 2 000μmol/L
幼苗鲜重Seedling
fresh weight
根长
Root
length
芽长
Shoot
length
平均
Mean
排序
Rank
幼苗鲜重
Seedling
fresh weight
根长
Root
length
芽长
Shoot
length
平均
Mean
排序
Rank
幼苗鲜重
Seedling
fresh weight
根长
Root
length
芽长
Shoot
length
平均
Mean
排序
Rank
A409 0.94 0.54 1.07 0.851 3 0.71 0.26 0.82 0.595 4 0.48 0.13 0.28 0.293 3
CN01 0.96 0.81 0.90 0.890 2 0.63 0.55 0.64 0.604 3 0.45 0.12 0.31 0.292 4
鄂抗棉10号
Ekangmian 10
0.92 0.84 1.00 0.921 1 0.76 0.59 0.83 0.725 1 0.47 0.11 0.34 0.307 2
鲁301 Lu 301 0.80 0.40 0.89 0.697 6 0.60 0.23 0.65 0.493 6 0.31 0.07 0.24 0.206 7
2870 0.86 0.48 0.86 0.731 5 0.70 0.26 0.73 0.565 5 0.44 0.12 0.30 0.285 5
SGK321 0.81 0.30 0.88 0.663 7 0.61 0.19 0.66 0.487 7 0.41 0.09 0.27 0.259 6
鲁7619
Lu 7619
0.74 0.79 0.85 0.794 4 0.69 0.50 0.73 0.639 2 0.45 0.09 0.40 0.315 1

Table 6

Subordinate function values of different cotton genotypes at different Cu2+ levels"

基因型
Genotype
10μmol/L 100μmol/L 2 000μmol/L
幼苗鲜重
Seedling
fresh weight
根长
Root
length
芽长
Shoot
length
平均
Mean
排序
Rank
幼苗鲜重
Seedling
fresh weight
根长
Root
length
芽长
Shoot
length
平均
Mean
排序
Rank
幼苗鲜重
Seedling
fresh weight
根长
Root
length
芽长
Shoot
length
平均
Mean
排序
Rank
A409 1.00 0.29 1.00 0.765 2 0.65 0.04 1.00 0.565 3 0.98 0.91 0.06 0.649 2
CN01 0.88 0.76 0.31 0.648 3 0.00 0.85 0.00 0.284 6 0.57 0.53 0.30 0.464 6
鄂抗棉10号
Ekangmian 10
0.96 0.87 0.49 0.775 1 1.00 1.00 0.82 0.941 1 1.00 0.39 0.39 0.594 3
鲁301 Lu 301 0.93 0.03 0.71 0.556 4 0.57 0.02 0.51 0.368 5 0.00 0.00 0.00 0.000 7
2870 0.69 0.06 0.00 0.252 6 0.74 0.00 0.36 0.369 4 0.82 0.62 0.11 0.515 5
SGK321 0.33 0.00 0.39 0.238 7 0.10 0.08 0.29 0.159 7 0.48 1.00 0.08 0.522 4
鲁7619
Lu 7619
0.00 1.00 0.15 0.384 5 0.63 0.92 0.56 0.703 2 0.79 0.38 1.00 0.723 1
[1] 武红 . 铜胁迫对玉米根系生长发育的影响研究. 兰州:西北师范大学, 2015.
[2] 张丽红 . 河北清苑县重金属污染水土环境风险评估. 北京:中国地质大学, 2011.
[3] 郑顺安, 陈春, 郑向群 , 等. 污染土壤不同粒级团聚体中铅的富集特征及其与叶类蔬菜铅吸收之间的相关性. 农业环境科学学报, 2013,32(3):556-564.
[4] 唐孟泉, 黄佳欢, 陈瑾元 , 等. 植物的铜稳态研究综述. 江苏农业科学, 2019,47(10):305-311.
[5] 杨昱, 秦樊鑫 . 铜胁迫对大豆幼苗抗氧化系统的影响. 作物杂志, 2014(1):81-85.
[6] 张凤, 郝树芹, 陈昆 . 铜胁迫对矮牵牛幼苗生长、光合色素及活性氧代谢的影响. 西部林业科学, 2017,46(6):97-102.
[7] 张刚, 翁悦, 李德香 , 等. 铜胁迫对黑麦草种子萌发及幼苗生理生态的影响. 东北师大学报(自然科学版), 2019,51(1):119-124.
[8] 胡筑兵, 陈亚华, 王桂萍 , 等. 铜胁迫对玉米幼苗生长、叶绿素荧光参数和抗氧化酶活性的影响. 植物学通报, 2006,23(2):129-137.
[9] Mocquot B, Vangronsveld J, Clijsters H , et al. Copper toxicity in young maize (Zea mays L.) plants:effects on growth,mineral and chlorophyll contents,and enzyme activities. Plant and Soil, 1996,182(2):287-300.
doi: 10.1007/BF00029060
[10] Xiong Z, Wang H . Copper toxicity and bioaccumulation in Chinese cabbage (Brasssica pekinensis Rupr). Environmental Toxicology, 2005,20(2):188-194.
doi: 10.1002/(ISSN)1522-7278
[11] 董春兰 . 铜胁迫下凤丹和观赏牡丹的生理反应及凤丹转录组分析. 南京:南京农业大学, 2013.
[12] 赵思怡, 陈菲, 张鹤山 , 等. 51份红三叶种质资源萌发期耐铜性评价. 种子, 2019,38(4):10-14,19.
[13] 薛盈文, 王玉凤, 赵长江 , 等. 铜胁迫对小麦种子萌发及幼苗抗氧化系统的影响. 江西农业大学学报, 2016,38(1):54-59.
[14] 董倩楠, 曹艳玲, 王燕 , 等. 不同铜离子浓度对绿豆根细胞结构的影响. 山西师范大学学报(自然科学版), 2017,31(1):78-83.
[15] 陈琳 . 江华植烟土壤、水质含铜调查及铜对烟草种子萌发的影响. 长沙:湖南农业大学, 2010.
[16] 肖志华, 张义贤, 张喜文 , 等. 外源铅、铜胁迫对不同基因型谷子幼苗生理生态特性的影响. 生态学报, 2012,32(3):889-897.
doi: 10.5846/stxb201108281256
[17] 杨楠 . 干旱及铅胁迫对主要造林树种种子萌发与幼苗生长的影响. 杨凌:西北农林科技大学, 2012.
[18] 李丰涛 . 红麻对重金属的吸收特征及外源GSH缓解镉毒的机理研究. 福州:福建农林大学, 2013.
[19] 陶向新 . 模糊数学在农业科学中的初步应用. 沈阳农学院报, 1982(2):96-107.
[20] 鱼小军, 张建文, 潘涛涛 , 等. 铜、镉、铅对7种豆科牧草种子萌发和幼苗生长的影响. 草地学报, 2015,23(4):793-803.
[21] Bae J, Benoit D L, Watson A K . Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes. Environmental Pollution, 2016(213):112-118.
[22] Sethy S K, Ghosh S . Effect of heavy metals on germination of seeds. Journal of Natural Science, Biology and Medicine, 2013,4(2):272-275.
doi: 10.4103/0976-9668.116964
[23] 刘燕红, 丁园, 史蓉蓉 . 铜镉污染对海州香薷种子萌发的影响. 南昌航空大学学报(自然科学版), 2010,24(1):91-95.
[24] 张远兵, 刘爱荣, 王兵 , 等. 铜胁迫下7个高羊茅品种耐性和铜积累能力的比较. 热带作物学报, 2010,31(5):750-757.
[25] 宋玉芳, 周启星, 许华夏 , 等. 重金属对土壤中小麦种子发芽与根伸长抑制的生态毒性. 应用生态学报, 2002,13(4):459-462.
[26] 祝沛平, 李凤玉, 梁海曼 . 铜对植物器官分化的影响. 植物生理学通讯, 1999,35(4):332-336.
[27] Tanyolac D, Ekmekci Y, Uanlan S . Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere, 2007,67(1):89-98.
doi: 10.1016/j.chemosphere.2006.09.052
[28] 孙建云, 沈振国 . 铜胁迫下甘蓝幼苗生长和铜吸收的基因型差异. 西北植物学报, 2005,25(10):2003-2009.
[29] 杨淑芳 . 铜胁迫下小麦幼苗生长生理及幼根超微结构、转录组学研究. 郑州:河南师范大学, 2014.
[30] Baker A J M . Metal tolerance. New Phytologist, 1987,106(Supp1):93-111.
doi: 10.1111/nph.1987.106.issue-s1
[31] Ali S, Rizwan M, Ullah N , et al. Physiological and biochemical mechanisms of silicon-induced copper stress tolerance in cotton (Gossypium hirsutum L.). Acta Physiologiae Plantarum, 2016,38(11):262-272.
doi: 10.1007/s11738-016-2279-3
[1] Lai Dili,Fan Yu,Zhu Honglin,He Feng,Liang Yong,Xu Xinran,Wen Jie,Wang Junzhen,Yan Jun,Cheng Jianping. Network Analysis of Physiological and Biochemical Indexes of Salt Tolerance in Oats [J]. Crops, 2020, 36(2): 147-155.
[2] Liu Jianxia,Bai Zezhen,Wang Runmei,Liu Lizhen,Zhang Zhenhua,Wen Riyu. Germination Characteristics and Accumulation Effects of Adzuki Bean under Heavy Metal Stress [J]. Crops, 2019, 35(6): 182-186.
[3] Ge Zhenmei,Liu Zhiguo,Zhao Lu,Zhang Xiaoyu,Liu Guixia. Effects of Salt Stress on Seeds Germination of Astragalus membranaceus [J]. Crops, 2019, 35(6): 187-194.
[4] Wang Mingyao,Cao Liang,Yu Qi,Zou Jingnan,He Songyu,Qin Bin,Wang Mengxue,Zhang Yuxian. Effects of Melatonin Soaking on Germination of Soybean Seeds under Saline-Alkali Stress [J]. Crops, 2019, 35(6): 195-202.
[5] Fan Huiling,Bai Shengwen,Zhu Xuefeng,Li Zhenzhou,Qin Minggang,He Zhijun. Difference of Salt-Alkaline Tolerance of Three Rape and Its Two Relatives at Germination Stage [J]. Crops, 2019, 35(3): 178-184.
[6] Ye Wenbin,He Yupeng,Wang Yu,Wang Han,Zhao Qingfang. Effects of Alkalized Olive Oil Processing Liquid Wastes on Seed Germination and Seedling Growth of Zea mays L. [J]. Crops, 2019, 35(3): 185-191.
[7] Jing Yan,Wenxiu Ji,Xianji Shi,Shimiao Zhu,Hulin Li. Effects of Cadmium Stress on Seed Germination and Seedling Growth of Tobacco (Nicotiana tabacum) [J]. Crops, 2019, 35(2): 142-149.
[8] Riyu Wen,Jianxia Liu,Zhenhua Zhang,Yaodong Guo,Xuyao Dai,Qingguo Jiang,Lisheng Fan. Effects of Drought Stress on Germination and Physiological Characteristics of Different Quinoa Seeds [J]. Crops, 2019, 35(1): 121-126.
[9] Ma Mengxue,Zhao Lingling,Tang Si,Chen Xianjun,Qin Rui. The Effects of Different Disinfection Methods on Seed Germination and Study on the Environmental Bacteria in Safflower (Carthamus tinctorius L.) [J]. Crops, 2018, 34(6): 162-167.
[10] Wu Ruixiang,Yang Jianchun,Wang Liqin,Guo Xiujuan. Evaluation of the Adaptability of Flax Drought Resistance Based on Multiple Statistics Analysis [J]. Crops, 2018, 34(5): 10-16.
[11] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum [J]. Crops, 2018, 34(4): 167-174.
[12] Wenhao Wang,Hongyuan Zheng,Wenjun Liu,Lifen He,Yuxing Yan. Effects of Exogenous Nitric Oxide on Seed Germination and Seedling Growth of Sunflower [J]. Crops, 2017, 33(4): 169-172.
[13] Zhenjie Zhao,Taibo Liang,Qiansi Chen,Liwei Hu,Yanling Zhang,Qisheng Yin. The Growth and Development of Plants Regulated by Carbon Nano-Materials [J]. Crops, 2017, 33(2): 7-13.
[14] Ziwei Zhang,Chunhua Pang,Yongqing Zhang,Ruijun Ni,Shifang Yang,Luyuan Wang,Liqin Liu. Effects of Iso-osmotic NaCl and PEG Stress and Rewatering on Seed Germination and Seedling Growth of Quinoa [J]. Crops, 2017, 33(1): 119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!