Crops ›› 2022, Vol. 38 ›› Issue (1): 110-115.doi: 10.16035/j.issn.1001-7283.2022.01.016

Previous Articles     Next Articles

Comprehensive Evaluation of Saline-Alkali Tolerance and Comparison of Rhizosphere Soil Organic Acid Content at Rapeseed Seedling Stage

Wu Pengbo(), Li Lijun, Zhang Yanli   

  1. College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
  • Received:2021-03-10 Revised:2021-10-22 Online:2022-02-15 Published:2022-02-16

Abstract:

In order to screen the saline-alkali tolerant rapeseed germplasms and explore the physiological role of organic acids in saline-alkali resistance of rapeseed. The saline-alkali resistance of eight rapeseed germplasms treated with alkaline salt (a mixture of NaHCO3 and Na2CO3 with a molar ratio of 2:1) were evaluated by fuzzy mathematical subordinative function analysis method, and then the organic acid content in rhizosphere soil of the two rapeseed germplasms with the strongest and weakest resistance to alkaline salt were investigated. The results showed that the strongest tolerant rapeseed germplasm was Huayouza 62 and the weakest was 16-P32 wai. The comprehensive evaluation of the tolerance was Huayouza 62 > Huashuang 5 > Chong 2 > 16-P22 wai > Qingza 9 > Jinyou 158 > 17 chong 1 > 16-P32 wai. Under alkaline salt stress condition, oxalic acid, tartaric acid, formic acid, malic acid, ascorbic acid, acetic acid, citric acid and succinic acid were detected in rhizosphere soil of Huayouza 62 and 16-P32 wai. Oxalic acid content was the highest, while the accumulation of ascorbic acid was very low. The contents of organic acids in rhizosphere soil of Huayouza 62 was generally higher than that of 16-P32 wai.

Key words: Rapeseed, Alkaline salt stress, Salinity tolerance index, Membership function, Rhizosphere soil organic acid

Table 1

The pH and electrical conductivity in soil after treating"

处理
Treatment
碱性盐浓度
Alkaline salt concentration
(g/kg)
pH 电导率
Electrical conductivity
(μS/cm)
A0 0 8.08 91.0
A2 2 9.00 179.4
A4 4 9.20 334.9
A6 6 9.35 577.3

Table 2

Principal component analysis of various indexes of rapeseed germplasms under alkaline salt stress"

指标
Index
因子载荷
Factor load
因子得分系数
Factor score
coefficient
1 2 1 2
出苗率Emergence rate 0.950 -0.109 0.152 -0.105
茎粗Stem diameter -0.040 0.992 -0.006 0.954
植株鲜重Plant fresh weight 0.985 -0.015 0.157 -0.015
植株干重Plant dry weight 0.968 -0.011 0.155 -0.011
根鲜重Root fresh weight 0.878 0.168 0.140 0.162
根干重Root dry weight 0.978 0.089 0.156 0.086
株高Plant height 0.951 0.015 0.152 0.014
主根长Main root length 0.901 -0.088 0.144 -0.085
特征值Eigenvalue 6.254 1.040
贡献率Contribution rate (%) 78.181 12.998
累计贡献率
Cumulative contribution rate (%)
78.181
91.179

Table 3

Mixed saline-alkali tolerance coefficients of each indicator of eight rapeseed germplasms"

编号
Number
出苗率
Emergence rate
茎粗
Stem diameter
植株鲜重
Plant fresh weight
植株干重
Plant dry weight
根干重
Root dry weight
株高
Plant height
主根长
Main root length
RA01 0.774 0.903 0.577 0.612 0.458 0.760 0.774
RA02 0.635 0.717 0.361 0.380 0.256 0.476 0.614
RA03 0.712 0.772 0.532 0.642 0.356 0.768 0.794
RA04 0.732 0.838 0.579 0.650 0.435 0.642 0.748
RA05 0.529 0.703 0.239 0.281 0.233 0.469 0.687
RA06 0.639 0.731 0.377 0.446 0.399 0.684 0.647
RA07 0.557 0.698 0.331 0.327 0.163 0.466 0.671
RA08 0.725 0.847 0.435 0.524 0.314 0.554 0.678

Table 4

Membership function and ranking of eight rapeseed germplasms under alkaline salt stress"

编号
Number
出苗率
Emergence
rate
茎粗
Stem
diameter
植株鲜重
Plant fresh
weight
植株干重
Plant dry
weight
根干重
Root dry
weight
株高
Plant
height
主根长
Main root
length
隶属函数值
Membership
function value
排序
Ranking
RA01 0.516 0.579 0.487 0.558 0.457 0.586 0.618 0.543 1
RA02 0.667 0.476 0.440 0.421 0.523 0.501 0.493 0.503 5
RA03 0.467 0.396 0.586 0.500 0.525 0.536 0.606 0.517 3
RA04 0.667 0.427 0.473 0.439 0.403 0.492 0.547 0.493 7
RA05 0.333 0.537 0.427 0.431 0.410 0.524 0.683 0.478 8
RA06 0.555 0.561 0.579 0.406 0.543 0.512 0.438 0.514 4
RA07 0.610 0.654 0.499 0.359 0.464 0.486 0.389 0.495 6
RA08 0.667 0.529 0.446 0.457 0.489 0.537 0.550 0.525 2

Fig.1

Differences in phenotypes of Huayouza 62 and 16-P32 wai under different alkaline salt concentrations"

Table 5

Organic acid contents of rapeseed rhizosphere soil under alkaline salt stress μg/mL"

种质
Germplasm
处理
Treatment
草酸
Oxalic acid
甲酸
Formic acid
柠檬酸
Citric acid
琥珀酸
Succinic acid
苹果酸
Malic acid
酒石酸
Tartaric acid
乙酸
Acetic acid
抗坏血酸
Ascorbic acid
华油杂62 A0 2.424±0.342Ad 1.809±0.237Ac 0.159±0.014Ac 2.725±0.398Ad 4.466±0.181Ab 0.548±0.028Aa 0.455±0.030Ab 0.018±0.006Ab
Huayouza 62 A2 4.050±1.758Ac 2.582±0.399Ab 0.170±0.006Ac 4.224±0.167Ac 5.630±0.133Ab 0.612±0.128Aa 0.734±0.116Aa 0.021±0.004Ab
A4 6.703±1.598Ab 2.890±0.384Aa 0.406±0.078Ab 8.491±0.353Ab 8.371±1.963Aa 0.652±0.067Aa 0.530±0.064Ab 0.065±0.005Aa
A6 32.228±2.388Aa 2.981±0.356Aa 0.618±0.007Aa 12.587±0.268Aa 5.479±0.804Ab 0.225±0.121Ab 0.191±0.004Ac 0.000±0.000Ac
16-P32外 A0 2.987±0.213Ac 1.619±0.325Ab 0.108±0.016Ac 2.337±0.326Ad 4.691±0.604Ab 0.401±0.039Bb 0.408±0.061Aa 0.009±0.006Bc
16-P32 wai A2 4.221±0.377Ab 2.365±0.409Aab 0.141±0.025Ac 4.147±0.659Ac 5.145±0.544Ab 0.507±0.093Aab 0.475±0.014Aa 0.018±0.003Ab
A4 4.652±0.186Ab 2.691±0.082Aab 0.359±0.036Ab 5.779±0.579Bb 7.623±0.249Aa 0.573±0.054Aa 0.457±0.117Aa 0.068±0.003Aa
A6 28.933±0.469Ba 3.308±1.272Aa 0.537±0.013Ba 9.300±0.197Ba 5.113±1.128Ab 0.367±0.085Ab 0.128±0.006Bb 0.000±0.000Ad
方差分析Analysis of variance
种质(V)Germplasm 48.92** 0.03ns 13.94** 145.54** 0.80ns 2.47ns 15.00** 1.46ns
处理(T)Treatment 5642.64** 10.91** 226.38** 760.03** 15.19** 21.39** 44.09** 303.54**
V×T 24.43** 0.52ns 0.58ns 36.57** 0.29ns 4.68* 3.05ns 2.35ns
[1] Jin H, Plaha P, Park J Y, et al. Comparative EST profiles of leaf and root of Leymus chinensis,a xerophilous grass adapted to high pH sodic soil. Plant Science, 2006, 170:1081-1086.
doi: 10.1016/j.plantsci.2006.01.002
[2] Li J, Xu H H, Liu W C, et al. Ethylene inhibits root elongation during alkaline stress through AUX1 and associated changes in auxin accumulation. Plant Physiology, 2015, 168:1777-1791.
doi: 10.1104/pp.15.00523
[3] Sun H, Lu H, Chu L, et al. Biochar applied with appropriate rates can reduce N leaching,keep N retention and not increase NH3 volatilization in a coastal saline soil. Science of the Total Environment, 2007, 575:820-825.
doi: 10.1016/j.scitotenv.2016.09.137
[4] Kawanabe S, Zhu T. Degeneration and conservational trial of Aneurolepidium chinense grassland in Northern China. Grassland Science, 1991, 39:91-99.
[5] Wang H, Lin X, Cao S, et al. Alkali tolerance in rice (Oryza sativa L.):growth,photosynthesis,nitrogen metabolism,and ion homeostasis. Photosynthetica, 2015, 53:55-65.
doi: 10.1007/s11099-015-0079-4
[6] Shi D C, Sheng Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environmental and Experimental Botany, 2005, 54(1):8-21.
doi: 10.1016/j.envexpbot.2004.05.003
[7] Shi D C, Wang D. Effects of various salt-alkali mixed stresses on Aneurolepidium chinense (Trin) Kitag. Plant Soil, 2005, 271:15-26.
doi: 10.1007/s11104-004-1307-z
[8] Chen W C, Cui P J, Sun H Y, et al. Comparative effects of salt and alkali stresses on organic acid accumulation and ionic balance of seabuckthorn (Hippophae rhamnoides L.). Industrial Crops and Products, 2009, 30:351-358.
doi: 10.1016/j.indcrop.2009.06.007
[9] Qasim M. Physiological and biochemical studiesin a potential oilseed crop canola (Brassica napus L.) under salinity (NaCl) stress. Faisalabad, Pakistan:University of Agriculture, 2000.
[10] Maas E V. Testing crops for salinity tolerance//Marnville J W,Baligar B V,Duncan R R,et al. Proc. Workshop on Adaptation of Plants to Soil Stresses,INTSORMIL Publication, 1993:234-247.
[11] 张新草, 薛项潇, 姜深, 等. 大豆种质发芽期耐盐碱性鉴定及指标筛选. 西北农业学报, 2020, 29(3):374-381.
[12] 桑晓慧, 赵云雷, 王红梅, 等. 陆地棉抗旱性与SSR分子标记的关联分析. 棉花学报, 2017, 29(3):241-252.
[13] 田小霞, 毛培春, 孟林, 等. 无芒雀麦苗期耐盐指标筛选及耐盐性综合评价. 干旱区资源与环境, 2017, 31(10):156-161.
[14] Munns R. Comparative physiology of salt and water stress. Plant,Cell and Environment, 2002, 25:239-250.
doi: 10.1046/j.0016-8025.2001.00808.x
[15] Seshadri B, Bolan N S, Naidu R, et al. Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation. Journal of Soil Science and Plant Nutrition, 2015, 15:524-528.
[16] Vítková M, Komárek M, Tejnecky V, et al. Interactions of nano-oxides with low-molecular-weight organic acids in a contaminated soil. Journal of Hazardous Materials, 2015, 293:7-14.
doi: 10.1016/j.jhazmat.2015.03.033
[17] Luo Q, Sun L N, Hu X M, et al. The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress:metabonomics analysis. PLoS ONE, 2014, 9(12):e115581.
doi: 10.1371/journal.pone.0115581
[18] Soudek P, Petrová S, Buzek M, et al. Uranium uptake in Nicotiana sp. under hydroponic conditions. Journal of Geochemical Exploration, 2014, 142(4):130-137.
doi: 10.1016/j.gexplo.2013.10.001
[19] Guo L Q, Shi D C, Wang D L, et al. The key physiological response to alkali stress by the alkali‐resistant halophyte Puccinellia tenuiflora is the accumulation of large quantities of organic acids and into the rhyzosphere. Journal of Agronomy and Crop Science, 2010, 196(2):123-135.
doi: 10.1111/jac.2010.196.issue-2
[20] Guo S H, Niu Y J, Zhai H, et al. Effects of alkaline stress on organic acid metabolism in roots of grape hybrid rootstocks. Scientia Horticulturae, 2018, 227:255-260.
doi: 10.1016/j.scienta.2017.09.051
[21] Qu Y G, Zhao K F. Comparative studies on growth and physiological reaction of Zea mays under NaCl and Na2CO3 stress. Acta Agronomica Sinica, 2004, 30:334-341.
[22] Qu Y G, Zhao K F. Comparative of the stress effects of NaCl and Na2CO3 on Suaeda salsa L. Journal of Plant Physiology and Molecular Biology, 2003, 29:387-394.
[23] Toal M E, Yeomans C V, Killham K S, et al. A review of rhizosphere carbon flow modeling. Plant and Soil, 2000, 222:263-281.
doi: 10.1023/A:1004736021965
[24] 杨玲, 沈海龙, 崔晓涛. NaHCO3胁迫下新西伯利亚银白杨幼苗生长和光合能力变化. 林业科学, 2012, 48(7):51-55.
[25] 杨传宝, 倪惠菁, 李善文, 等. 白杨派无性系苗期对NaHCO3胁迫的生长生理响应及耐盐碱性综合评价. 植物生理学报, 2016, 52(10):1555-1564.
[26] 王景艳, 刘兆普, 刘玲, 等. NaCl胁迫对长春花幼苗离子分布和光合作用的影响. 生态学杂志, 2008(10):1680-1684.
[27] 景宇鹏. 土默川平原盐渍化土壤改良前后土壤特性及玉米品种耐盐性研究. 呼和浩特:内蒙古农业大学, 2014.
[28] 王婧泽, 高树, 孙丽芳, 等. 3个玉米自交系对盐胁迫的生理响应及耐盐性评价. 干旱地区农业研究, 2017, 35(2):89-95.
[29] Shi D C, Yin S J, Yang G H, et al. Citric acid accumulation in an alkali-tolerant plant Puccinellia tenuiflora under alkaline stress. Acta Botanica Sinica, 2002, 44(5):537-540.
[30] 邹春雷. 甜菜适应碱性盐胁迫的生理机制及其转录组分析. 哈尔滨:东北农业大学, 2019.
[31] 李朝苏, 刘鹏, 徐根娣, 等. 外源有机酸对荞麦幼苗铝毒害的缓解效应. 作物学报, 2006, 32(4):532-539.
[32] 张世兴. 浇灌乙酸及草酸对葡萄盐碱胁迫的缓解作用. 泰安:山东农业大学, 2020.
[33] Yang C W, Chong J N, Li C Y, et al. Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. Plant and Soil, 2007, 294(1/2):263-276.
doi: 10.1007/s11104-007-9251-3
[34] Yang C W, Shi D C, Wang D L, et al. Comparative effects of salt and alkali stresses on growth,osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). Plant Growth Regulation, 2008, 56(2):179-190.
doi: 10.1007/s10725-008-9299-y
[1] Li Xinhao, Li Jun, Wan Lin, Liu Lixin, Liu Junquan, Ma Ni. Effects of No-Tillage and Drilling on Growth, Root System and Yield of Rapeseed (Brassica napus L.) in Hilly Area [J]. Crops, 2021, 37(6): 139-144.
[2] Xiong Tinghao, Zi Tao, Zhang Ai, Hu Yuqian, Peng Zhi, Song Haixing. Effects of Different Organic Fertilizer Dosages on Nutrient Utilization and Yield of Rapeseed under Chemical Fertilizer Reduction [J]. Crops, 2021, 37(3): 133-139.
[3] Li Zilin, Lu Yachun, Zhao Leifeng, Fan Dongsheng, Wei Zhong, Zhou Wenliang, Huang Liguang, Huang Yang, Huang Jingpeng, Gu Xinquan, Nian Fuzhao. Comprehensive Evaluation of the Suitability of Tobacco Planting Soil Fertility in Jingxi City [J]. Crops, 2021, 37(3): 155-160.
[4] Qin Lu, Wang Jianqiang, Han Peipei, Li Yinshui, Gu Chiming, Hu Xiaojia, Xie Lihua, Liao Xing. Difference in Nitrogen Absorption and Transportation and Utilization of Rapeseed Germplasms with Contrasting Nitrogen Efficiency [J]. Crops, 2021, 37(3): 28-33.
[5] Yi Zhenxie, Wang Yuanyuan, Gu Zihan, Shuai Zeyu, Tu Naimei, Chen Pingping. Study on the Feasibility of Alternative Planting of Rapeseed-Middle Rice to Double Cropping Rice in Cadmium Polluted Rice Area [J]. Crops, 2021, 37(3): 65-69.
[6] Wang Rui, Ping Jun′ai, Zhang Fuyao, Zhan Pengjie, Chu Jianqiang. Identification and Evaluation of Sorghum Breeding Resources for Barren Tolerance [J]. Crops, 2020, 36(6): 30-37.
[7] Zhang Yaowen, Li Dianrong, Hou Junli, Kong Jian, Zhang Wenxue, Dong Yuhong, Zhao Xiaoguang, Tian Jianhua, Zhang Zhongxin. Present Studies on Linolenic Acid in Rapeseed Seeds and Suggestions for Improvement [J]. Crops, 2020, 36(4): 21-29.
[8] Liu Haidong,Yu Qinglan,Wang Ruisheng,Du Dezhi. Screening of the Rapeseed Resoures for Resistance to Flea Beetle in Spring Rapeseed Region [J]. Crops, 2020, 36(2): 34-40.
[9] Shi Liran,Bai Lirong,Lü Yaci,Zhao Minghui,Zhao Fengwu,Li Huimin. Analysis of Salt Tolerance at the Seedling Stage of Wheat Hybrid Variety Heng 9966 [J]. Crops, 2018, 34(6): 149-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!