Crops ›› 2022, Vol. 38 ›› Issue (1): 102-109.doi: 10.16035/j.issn.1001-7283.2022.01.015

Previous Articles     Next Articles

Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region

Liu Menghong(), Wang Zhijun, Li Hongyu(), Zhao Haicheng, Lü Yandong   

  1. Agricultural College, Heilongjiang Bayi Agricultural University/Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, Heilongjiang, China
  • Received:2021-02-04 Revised:2021-10-21 Online:2022-02-15 Published:2022-02-16
  • Contact: Li Hongyu E-mail:ndsoil@163.com;ndrice@163.com

Abstract:

To improve the nitrogen utilization efficiency of rice in cold regions, a pot experiment was designed to compare the difference of yield, quality, dry matter production, net photosynthetic rate (Pn), nitrogen utilization efficiency. The result showed the aboveground dry matter accumulation, leaf area and root characteristics of side-deep fertilization (S2) and point-deep fertilization (S3) at tillering stage and filling stage were better than whole-layer fertilization (S1). The functional leaf SPAD at full heading stage and Pn at filling stage were lower than that of S1 treatment. The amylose content of S2 treatment was significantly lower than that of S1 treatment. Brown rice rate, milled rice rate and protein content of S3 treatment were significant or extremely significant lower than that of S1 treatment, and amylose content and taste value of S3 treatment were significantly higher than S1 treatment. Compared with S1 treatment, N physiological efficiency of S2 treatment increased by 37.63%, N recovery efficiency, physiological efficiency, partial factor productivity of S3 treatment increased by 20.14%, 67.57% and 13.08%, respectively. 1000-grain weight, aboveground dry matter accumulation at tillering stage and filling stage, leaf area at tillering stage, Pn of functional leaves at tillering stage and filling stage of nitrogen fertilizer reduction by 15% were significantly lower than conventional nitrogen application. Comprehensive consideration of yield, quality and nitrogen utilization efficiency, point-deep fertilization combined with nitrogen fertilizer reduction by 15% was the optimal combination.

Key words: Rice, Fertilization method, Nitrogen application rate, Yield, Quality, Nitrogen utilization efficiency

Table 1

Fertilization rate and fertilization period"

施肥方式
Fertilization method
施氮量
Nitrogen application
基肥Basic fertilizer 分蘖肥
Tillering fertilizer
调节肥
Regulating fertilizer
穗肥Panicle fertilizer
N P2O K2O N K2O
S1 N1 2.30 2.88 1.73 1.73 0.58 1.15 1.15
N2 1.96 2.88 1.73 1.47 0.49 0.98 1.15
S2 N1 2.30 2.88 1.73 1.73 0.58 1.15 1.15
N2 1.96 2.88 1.73 1.47 0.49 0.98 1.15
S3 N1 2.30 2.88 1.73 1.73 0.58 1.15 1.15
N2 1.96 2.88 1.73 1.47 0.49 0.98 1.15
无氮区 0.00 2.88 1.73 0.00 0.00 0.00 1.15

Table 2

Comparison of yield and its components of different treatments"

处理
Treatment
穗数
Panicles per hole
穗粒数
Grains per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
产量(g/穴)
Yield (g/hole)
S1 14.19aA 91.19abA 96.84aA 19.94bB 25.03bB
S2 14.55aA 87.03bA 97.31aA 20.41bAB 25.48bB
S3 14.75aA 93.60aA 96.67aA 21.45aA 28.58aA
FS 1.98ns 3.73* 1.72ns 6.67** 7.18**
N1 14.83aA 89.30aA 97.17aA 21.04aA 27.09aA
N2 14.29aA 91.91aA 96.71aA 20.16bA 25.63aA
FN 4.12ns 1.74ns 2.56ns 6.46* 3.07ns
FS×N 0.02ns 0.51ns 7.72** 0.21ns 0.13ns

Fig.1

Effects of interaction of fertilization mode and nitrogen application rates on seed-setting rate The different uppercase, lowercase letters indicate extremely significant (P < 0.01) and significant (P < 0.05) difference among different nitrogen application rates under the same fertilization method, respectively, the same below"

Table 3

Comparison of accumulation of aboveground dry matter"

处理
Treatment
分蘖期
Tillering stage
齐穗期
Full heading stage
灌浆期
Filling stage
S1 2.89bB 26.68aA 44.18bB
S2 4.03aA 27.69aA 48.70aA
S3 4.18aA 29.35aA 50.65aA
FS 79.77** 2.11ns 15.89**
N1 3.83aA 28.30aA 49.25aA
N2 3.56bB 27.51aA 46.44bB
FN 8.57** 0.56ns 8.55**
FS×N 23.30** 1.06ns 0.28ns

Fig.2

Effects of the interaction of fertilization and nitrogen application rate on aboveground dry matter accumulation at tillering stage"

Table 4

Comparison of leaf area in each reproductive period "

处理
Treatment
分蘖期叶面积
Leaf area at tillering stage
齐穗期Full heading stage 灌浆期Filling stage
高效叶面积High effective leaf area 叶面积Leaf area 高效叶面积High effective leaf area 叶面积Leaf area
S1 370.17bB 1303.21aA 1741.29aA 1396.90bB 1630.29bB
S2 466.96aA 1414.18aA 1818.98aA 1553.51aA 1833.10aA
S3 457.06aA 1361.24aA 1786.70aA 1348.58bB 1540.78bB
FS 31.69** 1.52ns 0.50ns 8.72** 13.55**
N1 443.49aA 1317.81aA 1737.77aA 1427.99aA 1696.00aA
N2 419.30bA 1401.28aA 1826.87aA 1438.00aA 1640.12aA
FN 4.90* 2.57ns 1.96ns 0.06ns 1.41ns
FS×N 17.23** 0.60ns 1.65ns 0.15ns 0.36ns

Fig.3

Effects of the interaction of fertilization method and nitrogen application on leaf area at tillering stage"

Table 5

Comparison of root characteristics at tillering stage"

处理
Treatment
总根长
(cm/穴)
Total root
length
(cm/hole)
根平均直径
Root
average diameter
(mm)
根表面积
(cm2/穴)
Root surface area
(cm2/hole)
根体积
(cm3/穴)
Root volume
(cm3/hole)
S1 5303.55bB 0.53bA 970.03bB 27.57bA
S2 6928.92aA 0.55abA 1246.34aA 34.66aA
S3 6052.05abAB 0.58aA 1193.74aAB 35.42aA
FS 6.75** 3.17ns 6.49** 4.63*
N1 5942.56aA 0.54aA 1088.41aA 30.35aA
N2 6247.12aA 0.56aA 1185.00aA 34.76aA
FN 0.71ns 1.82ns 2.11ns 3.59ns
FS×N 14.86** 0.66ns 16.02** 10.68**

Fig.4

Effects of interaction of fertilization method and nitrogen application rate on total root length, root surface area and root volume at tillering stage"

Table 6

Comparison of SPAD values of function leaves"

处理
Treatment
分蘖期
Tillering stage
齐穗期
Full heading stage
灌浆期
Filling stage
S1 29.54bB 41.43aA 40.20aA
S2 31.28aA 39.54bB 39.29aA
S3 31.07aA 39.09bB 40.07aA
FS 9.58** 9.85** 1.34ns
N1 30.53aA 40.15aA 39.91aA
N2 30.23aA 39.89aA 39.80aA
FN 0.31ns 0.32ns 0.05ns
FS×N 2.46ns 1.51ns 2.88ns

Table 7

Comparison of Pn of functional leaves μmol/(m2·s)"

处理
Treatment
分蘖期
Tillering stage
齐穗期
Full heading stage
灌浆期
Filling stage
S1 32.33aA 25.78aA 24.25aA
S2 31.11aA 26.75aA 18.68cB
S3 31.88aA 24.39aA 22.29bA
FS 0.22ns 1.44ns 21.98**
N1 33.80aA 25.43aA 22.87aA
N2 29.74bA 25.84aA 20.61bB
FN 7.20* 0.13ns 10.51**
FS×N 0.98ns 0.15ns 9.67**

Fig.5

Effects of the interaction of fertilization method and nitrogen application rate on Pn at filling stage"

Table 8

Comparison of main quality indexes"

处理
Treatment
糙米率
Brown rice rate
(%)
精米率
Milled rice rate
(%)
整精米率
Head rice rate
(%)
垩白粒率
Chalky grain rate
(%)
垩白度
Chalkiness
(%)
蛋白质含量
Protein content
(%)
直链淀粉含量
Amylose content
(%)
食味值
Taste
value
S1 84.26aA 77.01aA 65.75aA 0.26aA 0.08aA 7.60aA 15.86bAB 83.56bA
S2 84.07abAB 76.95abA 66.28aA 0.40aA 0.21aA 7.63aA 15.71bB 83.81abA
S3 83.93bB 76.67bA 65.45aA 0.35aA 0.18aA 7.21bB 16.06aA 85.00aA
FS 5.63** 3.66* 0.66ns 0.44ns 1.23ns 15.80** 7.50** 3.40*
N1 84.11aA 76.85aA 66.37aA 0.35aA 0.18aA 7.44aA 15.93aA 84.22aA
N2 84.06aA 76.90aA 65.28aA 0.32aA 0.13aA 7.32aA 15.83aA 84.02aA
FN 0.39ns 0.18ns 3.45ns 0.08ns 0.55ns 1.25ns 1.53ns 0.18ns
FS×N 1.86ns 0.86ns 0.35ns 0.29ns 0.15ns 0.05ns 0.96ns 0.02ns

Table 9

Comparison of nitrogen utilization efficiency in different treatments"

处理
Treatment
地上部含氮量(g/穴)
Aboveground nitrogen
content (g/hole)
氮肥农学利用率
Agronomic efficiency
of N fertilizer (g/g)
氮肥吸收利用率
N recovery efficiency
(%)
氮肥生理利用率
N physiological efficiency
(g/g)
氮肥偏生产力
N partial factor
productivity (g/g)
S1 0.49aA 14.47aA 33.52bB 35.61bB 74.18bB
S2 0.50aA 15.79aA 36.45bAB 49.01aAB 76.57bAB
S3 0.51aA 16.07aA 40.27aA 59.67aA 83.88aA
FS 1.76ns 2.26ns 10.52** 9.08** 5.91**
N1 0.51aA 16.10aA 37.61aA 51.93aA 78.32aA
N2 0.48bA 14.79aA 35.88aA 44.26aA 78.10aA
FN 6.45* 3.95ns 2.06ns 2.75ns 0.01ns
FS×N 0.11ns 1.86ns 0.53ns 1.57ns 0.14ns
[1] 段然, 汤月丰, 王亚男, 等. 不同施肥方法对双季稻区水稻产量及氮素流失的影响. 中国生态农业学报, 2017, 25(12):1815-1822.
[2] 张洪程, 龚金龙. 中国水稻种植机械化高产农艺研究现状及发展探讨. 中国农业科学, 2014, 47(7):1273-1289.
[3] 侯红乾, 冀建华, 刘益仁, 等. 缓/控释肥对双季稻产量、氮素吸收和平衡的影响. 土壤, 2018, 50(1):43-50.
[4] 彭显龙, 刘元英, 罗盛国, 等. 寒地稻田施氮状况与氮素调控对水稻投入和产出的影响. 东北农业大学学报, 2007, 38(4):467-472.
[5] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5):915-924.
[6] 彭显龙, 王伟, 周娜, 等. 基于农户施肥和土壤肥力的黑龙江水稻减肥潜力分析. 中国农业科学, 2019, 52(12):2092-2100.
[7] 王秋菊, 焦峰, 刘峰, 等. 草甸白浆土稻秆氮利用效率及氮素调控对水稻产量的影响. 农业工程学报, 2019, 35(11):86-94.
[8] 苑俊丽, 梁新强, 李亮, 等. 中国水稻产量和氮素吸收量对高效氮肥响应的整合分析. 中国农业科学, 2014, 47(17):3414-3423.
[9] Alimata B, Fofana B, Sansan Y, et al. Effect of fertilizer deep placement with urea super granule on nitrogen use efficiency of irrigated rice in Sourou Valley (Burkina Faso). Nutrient Cycling in Agroecosystems, 2015, 102(1):79-89.
doi: 10.1007/s10705-014-9653-6
[10] 马昕, 杨艳明, 刘智蕾, 等. 机械侧深施控释掺混肥提高寒地水稻的产量和效益. 植物营养与肥料学报, 2017, 33(4):1095-1103.
[11] 王秀斌, 徐新朋, 孙静文, 等. 氮肥运筹对机插双季稻产量、氮肥利用率及经济效益的影响. 植物营养与肥料学报, 2016, 22(5):1167-1176.
[12] Liu X, Wang H, Zhou J, et al. Effect of N fertilization pattern on rice yield,N use efficiency and fertilizer-N fate in the Yangtze River basin,China. PLoS ONE, 2016, 11(11):e0166002.
doi: 10.1371/journal.pone.0166002
[13] 孙浩燕, 李小坤, 任涛, 等. 浅层施肥对水稻苗期根系生长及分布的影响. 中国农业科学, 2014, 47(12):2476-2484.
[14] Zhang M, Yao Y L, Zhao M, et al. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field. Agriculture Ecosystems and Environment, 2017, 247:236-245.
doi: 10.1016/j.agee.2017.07.001
[15] 郑桂萍, 韩东来, 吕艳东, 等. 水稻旱平垄作双侧双深高效栽培新模式与技术规范. 黑龙江八一农垦大学学报, 2016, 28(1):1-3.
[16] 李金峰, 许春林, 初江, 等. 水稻节水保护性耕作栽培的技术效果. 中国水稻科学, 2005, 19(6):567-569.
[17] Yao Z, Zheng X, Zhang Y, et al. Urea deep placement reduces yield-scaled greenhouse gas (CH4 and N2O) and NO emissions from a ground cover rice production system. Scientific Reports, 2017, 7(1):11415.
doi: 10.1038/s41598-017-11772-2
[18] 刘晓伟, 陈小琴, 王火焰, 等. 根区一次施氮提高水稻氮肥利用效率的效果和原理. 土壤, 2017, 49(5):868-875.
[19] 莫钊文, 潘圣刚, 王在满, 等. 机械同步深施肥对水稻品质和养分吸收利用的影响. 华中农业大学学报, 2013, 32(5):34-39.
[20] 朱从桦, 张玉屏, 向镜, 等. 侧深施氮对机插水稻产量形成及氮素利用的影响. 中国农业科学, 2019, 52(23):4228-4239.
[21] Pan S G, Wen X C, Wang Z M, et al. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Research, 2017, 203:139-149.
doi: 10.1016/j.fcr.2016.12.011
[22] 赵红玉, 徐寿军, 杨成林, 等. 侧深施肥技术对寒地水稻生长及产量形成的影响. 内蒙古民族大学学报(自然科学版), 2017, 32(4):347-352.
[23] 王海月, 李玥, 孙永健, 等. 不同施氮水平下缓释氮肥配施对机插稻氮素利用特征及产量的影响. 中国水稻科学, 2017, 31(1):50-64.
[24] 李殿平, 曹海峰, 张俊宝, 等. 全程深施肥对水稻产量形成及稻米品质的影响. 中国水稻科学, 2006, 20(1):73-78.
[25] 成臣, 曾勇军, 王祺, 等. 施氮量对晚粳稻甬优1538产量、品质及氮素吸收利用的影响. 水土保持学报, 2018, 32(5):222-228.
[26] 剧成欣, 陈尧杰, 赵步洪, 等. 实地氮肥管理对不同氮响应粳稻品种产量和品质的影响. 中国水稻科学, 2018, 32(3):237-246.
[27] 施标, 王慧, 王士梅, 等. 不同氮素水平下水稻籽粒灌浆过程中主要品质性状的动态差异. 上海农业学报, 2007, 23(1):24-29.
[28] 周培南, 冯惟珠, 许乃霞, 等. 施氮量和移栽密度对水稻产量及稻米品质的影响. 江苏农业研究, 2001, 22(1):27-31.
[29] 从夕汉, 施伏芝, 阮新民, 等. 氮肥水平对不同基因型水稻氮素利用率、产量和品质的影响. 应用生态学报, 2017, 28(4):1219-1226.
[30] 陈莹莹. 江苏早熟晚粳品种稻米品质对氮肥的响应及其类型. 扬州:扬州大学, 2012.
[31] 薛欣欣, 吴小平, 张永发, 等. 控失尿素对稻田氨挥发、氮素转运及利用效率的影响. 应用生态学报, 2018, 29(1):133-140.
[32] 张木, 唐拴虎, 逄玉万, 等. 不同氮肥及施用方式对水稻养分吸收特征及产量形成的影响. 中国土壤与肥料, 2017(2):69-75.
[33] Das S, Islam M R, Sultana M, et al. Effect of deep placement of nitrogen fertilizers on rice yield and N use efficiency under water regimes. SAARC Journal of Agriculture, 2015, 13(2):161-172.
doi: 10.3329/sja.v13i2.26577
[1] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[2] Liu Lei, Song Nana, Qi Xiaoli, Cui Kehui. Research Advances on the Relationship between Root Characteristics and Nitrogen Uptake and Utilization Efficiency in Rice [J]. Crops, 2022, 38(1): 11-19.
[3] He Yuxuan, Li Yajuan, Zhou Mingzhuo, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System [J]. Crops, 2022, 38(1): 116-123.
[4] Long Ruiping, Zhang Chaozhong, Ge Qinying, Wan Weidong, Wang Qin, Li Guiyong, Xia Qiongmei, Zhu Haiping, Yang Congdang. Analysis of Growth Characteristics and Economic Benefit of Mechanical Transplanted Japonica Rice with Applying Panicle Nitrogen under Rotation of Paddy-Upland [J]. Crops, 2022, 38(1): 124-129.
[5] Cui Shiyou, Zhang Yang, Zhai Caijiao, Dong Shiqi, Zhang Jiao, Chen Pengjun, Han Jijun, Dai Qigen. Performance of Yield and Quality of Japonica Rice under Brackish Water Irrigation on the Reclaimed Tidal Flat [J]. Crops, 2022, 38(1): 137-141.
[6] Liu Zigang, Lu Haibo, Wu Minhua, Zhao Haichao, Wei Dong, Huang Zhihong. Effects of Chemical Regulator of Yuhuangjin on Lodging Resistance and Yield of Spring Maize [J]. Crops, 2022, 38(1): 142-146.
[7] Jin Dan, Feng Naijie, Zheng Dianfeng, Wang Shiya. Effects of 5-Aminolevulinic Acid on Carbon Metabolism and Yield of Mung Bean [J]. Crops, 2022, 38(1): 147-153.
[8] Xie Huimin, Wu Ke, Liu Wenqi, Wei Guoliang, Lu Xian, Li Zhuanglin, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Partial Substitution of Seaweed Fertilizers and Microbial Inoculant for Chemical Fertilizer on Rice Yield and Its Components [J]. Crops, 2022, 38(1): 161-166.
[9] Bai Junbing, Wang Yanjie, Wang Demei, Yang Yushuang, Wang Yujiao, Guo Dandan, Liu Zhewen, Chang Xuhong, Shi Shubing, Zhao Guangcai. Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels [J]. Crops, 2022, 38(1): 167-173.
[10] Du Xin, Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang. Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress [J]. Crops, 2022, 38(1): 174-178.
[11] Wang Qingbin, Lu Jiechun, Peng Chun’e, Meng Hui, Liu Zhiguo, Wang Hongfeng, Zhang Min. Effects of Different Nitrogen Application Rates Combined with Extracts of Paecilomyces variotii (ZNC) on Growth and Nitrogen Uptake of Pakchoi [J]. Crops, 2022, 38(1): 190-195.
[12] Yang Zhinan, Huang Jinwen, Han Fanxiang, Li Yawei, Ma Jiantao, Chai Shouxi, Cheng Hongbo, Yang Delong, Chang Lei. Effects of Straw Strip Mulching on Soil Temperature and Yield of Potato Field in Rain-Fed Region in Northwest China [J]. Crops, 2022, 38(1): 196-204.
[13] Duan Liuying, Wu Ting, Li Xia, Xie Jiankun, Hu Biaolin. Progress on Cytoplasmic Male Sterility and Fertility Restoration Genes in Rice [J]. Crops, 2022, 38(1): 20-30.
[14] Li Runqing, Shen Yong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108 [J]. Crops, 2022, 38(1): 205-212.
[15] Feng Sufen, Liu Yuanjian, Xu Ruiqi, Zhang Wei. Analysis on Main Traits of Fresh Corn Varieties Recently Approved in Yunnan Province [J]. Crops, 2022, 38(1): 220-226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!