Crops ›› 2022, Vol. 38 ›› Issue (1): 44-49.doi: 10.16035/j.issn.1001-7283.2022.01.006

Previous Articles     Next Articles

Association Analysis of Crude Fat and Fatty Acid Components in Flax Based on SSR Markers

Gao Fengyun(), Siqin Bateer(), Zhou Yu, Jia Xiaoyun, Su Shaofeng, Zhao Xiaoqing, Jin Xiaolei   

  1. Institute of Characteristic Crops, Inner Mongolia Academy of Agriculture and Husbandry Sciences/Institute of Biotechnology, Inner Mongolia Academy of Agriculture and Husbandry Sciences, Hohhot 010031, Inner Mongolia, China
  • Received:2021-04-07 Revised:2021-12-21 Online:2022-02-15 Published:2022-02-16
  • Contact: Siqin Bateer E-mail:gaofengyunnm@163.com;nmgbaater@163.com

Abstract:

In order to understand the genetic variation of crude fat and fatty acid components in flax germplasm, the generalized linear model (GLM) was used to analyze the genetic variation of 230 flax germplasms. The results showed that the variation coefficients of crude fat and five fatty acids were 7.39%-22.67%, and the genetic diversity indexes were 2.66-2.80. The correlation coefficient between crude fat and linolenic acid was the highest (0.669). Thirty pairs of SSR primers were selected, and a total of 365 bands were amplified. The number of effective alleles ranged from 1.2168 to 1.8320, and the polymorphism of primers ranged from 0.2489 to 0.6257. The 230 flax resources could be divided into four groups when population structure K=4. There were 22 SSR loci significantly associated with five fatty acids, and four SSR loci were detected in crude fat. These results indicated that the genetic diversity of 230 flax germplasms was rich, and the contents of five fatty acids and crude fat were significantly associated with SSR markers.

Key words: Flax, Quality, Crude fat, Fatty acid components, Correlation analysis, SSR

Table 1

Sequences of 30 pairs of primers"

引物名称Primer name 序列(5′-3′)Sequence (5′-3′) 引物名称Primer name 序列(5′-3′)Sequence (5′-3′)
Lub4 TGGAAGTCAACGAGATCGAA
ACAGCAGCCTCCGTGTTTAT
Lu400 GAATGGCTCCTCGAAAGATG
ATTAGACGGGGAGCTTGAGG
Lub13 CGAGGATGACAATGATGACG
CAGCAGCAGCATCAGGTAAA
Lu422 GTTAATCGCCCCTGAACTGA
TTGCAGTTACAACAGCAGCA
Lua37 CACAGCACAGACACAGACCA
GGCGGCTTTAAGAAGTGAAA
Lu462 AATGAGCACAACAACAGCAAG
AGCAGCTCTGGACTTGAGGA
Lua69 CTAAACCACACCCCCATCAC
AAAGTGGGGAAATTGGGCTA
Lu465 CAAGACTTGTAGGGCGGAAC
CGTCGGCCTATGAGAAGAAC
Lua83B CCCTCATTTTTCTCCTTCCA
CAGGCGTTACAGTTTCCCATA
Lu511 CATTGACCTCCCATTTCACC
TCAAGGAAGGCTCGTTGTTC
Lua125a GCCTTTGGAGGGCTTAACTT
ACAATCCCAACATTCCCAAA
Lu554 GGCCAAGGATATAGCACGAA
TTGGACCTTAAGCCCAGATG
Lu146 AACCTGAACCAGACGAGCAT
AGGTGGATCCAGCAAGCTAA
Lu598 TAGAGGCCAGCTAGCAGCA
AAAAGCTTCCCTTTGGTGGT
Lu176 TCCATCCTCTGCATTTGTGA
AAGACGAGTGCCCATTCCTA
Lu661 AAGACAACAACCTGGGGAAA
GATTCAGCAGCCGAGAGTG
Lu203a CCTTTTCACGCAGAGCTACC
GCTTCCGTAATCCTCTTCCA
Lu747 CGGCTGAGGATTACTTGTCG
TAAACTCCACTTCCCCCAAC
Lu263 GCCGAAAGTTGAAGCATAGG
TGTTGCTTGTTGGCAAACTG
Lu765B CCTCATTCCGCTCAGCAA
CGAAAATGGGGAAGATGATG
Lu266 ACGACACCGGATTTATCTGC
ACGTGTCCTCCACATGCTCT
Lu771 ATACTCCTCCGACGCTGATG
AACCTCGAAACGAATGATGC
Lu273 CGATGATCACTGGACGGATA
CATAGCTTCAAAGGCAGCAC
Lu785 CGAGGCATCATATTTTCTCTTG
ATCAGCAATCAATCGCATCA
Lu291 GGAAATTCCAAGTTCCCAGT
AGTTTCGCTATTCCGTCTGC
Lu787 AAGACCACCACAAGGGACAG
TGAACCATAGCGATCATCACA
Lu316 TCCTCGGAAGAAGAAGACGA
GAGAGGAATCATGGCGGATA
Lu840 ATTCCTTTTTGAGGGCGAGT
ACAGCTGGAACTGGAGAGGA
Lu330 TCTTGTACATTGCGGCACTC
GCACCAGATGAGGAAGAGGA
Lu849 CGACACAGCATTCAATGACC
CAGACCTTGGAGCTTTGGAG

Table 2

Statistical analysis of quality characteristics of 230 flax germplasms"

品质性状
Quality characteristic
最小值
Min. (%)
最大值
Max. (%)
均值
Mean (%)
标准差
Standard deviation
变异系数
CV (%)
遗传多样性指数
Genetic diversity index
粗脂肪含量Crude fat content 35.51 43.21 39.01 2.88 7.39 2.80
棕榈酸含量Palmatic acid content 3.00 6.27 4.45 0.75 16.28 2.74
硬脂酸含量Stearic acid content 3.65 13.96 7.82 1.77 22.67 2.66
油酸含量Oleic acid content 6.52 32.68 20.26 3.66 18.08 2.72
亚油酸含量Linoleic acid content 11.30 20.20 16.24 1.91 11.74 2.78
亚麻酸含量Linolenic acid content 39.35 65.29 49.67 4.54 9.14 2.80

Table 3

Correlation analysis of quality characteristics of flax germplasms"

品质性状
Quality characteristic
棕榈酸含量
Palmatic acid
content
硬脂酸含量
Stearic acid
content
油酸含量
Oleic acid
content
亚油酸含量
Linoleic acid
content
亚麻酸含量
Linolenic acid
content
粗脂肪含量
Crude fat
content
棕榈酸含量Palmatic acid content 1
硬脂酸含量Stearic acid content -0.429** 1
油酸含量Oleic acid content 0.360** 0.054 1
亚油酸含量Linoleic acid content 0.147* 0.394** -0.03 1
亚麻酸含量Linolenic acid content 0.308** -0.031 -0.191** -0.395** 1
粗脂肪含量Crude fat content 0.483** 0.106 0.388* 0.273** 0.669** 1

Table 4

Amplification of 230 flax germplasms using 30 pairs of SSR primer"

引物名称
Primer name
多态性位点数
Number of
polymorphic loci
有效等位基因数
Number of
effective alleles
引物PIC
Primer PIC
引物名称
Primer name
多态性位点数
Number of
polymorphic loci
有效等位基因数
Number of
effective alleles
引物PIC
Primer PIC
Lu4 7 1.4053 0.4253 Lu400 13 1.3216 0.3423
Lu13 11 1.4162 0.4085 Lu422 9 1.7526 0.6117
Lu37 11 1.8230 0.6257 Lu462 19 1.4617 0.4422
Lu69 8 1.1991 0.2489 Lu465 13 1.5082 0.4545
Lu83B 13 1.6207 0.5440 Lu511 10 1.3910 0.3927
Lu125a 12 1.2168 0.2765 Lu554 5 1.5741 0.4998
Lu146 15 1.4852 0.4765 Lu598 15 1.4779 0.4105
Lu176 9 1.3284 0.3788 Lu661 11 1.2276 0.2896
Lu203a 13 1.5499 0.5059 Lu747 14 1.4020 0.4183
Lu263 10 1.3633 0.3841 Lu765B 14 1.4558 0.4320
Lu266 6 1.4834 0.4819 Lu771 10 1.3083 0.3340
Lu273 12 1.2813 0.3548 Lu785 14 1.3927 0.3997
Lu291 18 1.3264 0.3638 Lu787 14 1.6178 0.5364
Lu316 17 1.3894 0.3878 Lu840 16 1.4884 0.4625
Lu330 10 1.5515 0.4904 Lu849 15 1.4865 0.4571

Fig.2

Amplification results of primer Lu840 in 24 flax germplasms"

Fig.3

ΔK with the change of K values"

Fig.4

Analysis of population structure of 230 flax germplasms"

Table 5

Association analysis of quality characteristic s and SSR polymorphism loci of flax germplasms"

品质性状
Quality characteristic
SSR位点
SSR loci
P
P-value
表型变异解释率
Phenotypic variation (%)
品质性状
Quality characteristic
SSR位点
SSR loci
P
P-value
表型变异解释率
Phenotypic variation (%)
粗脂肪含量
Crude fat content
S116 6.69 3.03 硬脂酸含量
Stearic acid content
S36 5.64 3.01
S121 7.89 2.91 S241 6.58 2.91
S230 9.39 2.79 S354 8.15 2.76
S158 9.97 2.74 S83 8.41 2.73
棕榈酸含量
Palmatic acid content
S190 6.89 2.72 S216 9.33 2.66
S110 7.52 2.66 亚油酸含量
Linoleic acid content
S99 6.13 3.26
S51 7.71 2.61 S159 6.31 3.24
S254 8.13 2.52 S167 6.49 3.22
S60 9.39 2.45 S116 6.75 3.19
油酸含量
Oleic acid content
S342 5.20 3.44 S28 6.91 3.17
S115 7.30 3.17 S160 7.67 3.09
S353 8.64 3.04 S347 8.51 3.01
亚麻酸含量
Linolenic acid content
S347 5.28 3.35 S304 9.84 2.90
[1] 党占海, 赵玮. 中国现代农业产业可持续发展战略研究胡麻分册. 北京: 中农业出版社, 2016.
[2] 张辉, 曲文祥, 李书田. 内蒙古特色作物. 北京: 中国农业科学技术出版社, 2010.
[3] Xie D W, Dai Z, Yang Z, et al. Genomic variations and association study of agronomic traits in flax. Bmc Genomics, 2018, 19(1):512-517.
doi: 10.1186/s12864-018-4899-z
[4] Bogachev A A, Gavrilova N A, Kurdyukov E E, et al. Comparative study of component and fatty-acid composition of flax seed. International Journal of Molecular Sciences, 2018, 19(8):2303.
doi: 10.3390/ijms19082303
[5] Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 1994, 20(2):176-183.
pmid: 8020964
[6] 赵利, 党占海, 张建平. 甘肃胡麻地方品种种质资源品质分析. 中国油料作物学报, 2006, 28(3):282-286.
[7] 伊六喜, 斯钦巴特尔,张辉,等. 胡麻核心种质资源表型变异及SRAP分析. 中国油料作物学报, 2017, 39(5):794-804.
[8] 张琼, 王利民, 张建平, 等. 胡麻重组自交系脂肪酸含量的遗传分析. 生物技术通报2015, 31(12):115-121.
[9] Cloutier S, Niu Z, Datla R, et al. Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theoretical and Applied Genetics, 2009, 119(1):53-63.
doi: 10.1007/s00122-009-1016-3 pmid: 19357828
[10] Wu J Z, Zhao Q, Wu G W, et al. Development of novel SSR markers for flax (Linum usitatissimum L.) using reduced-representation genome sequencing. Frontiers in Plant Science, 2017, 7:2018.
[11] Choudhary S B, Sharma H K, Kumar A A, et al. SSR and morphological trait based population structure analysis of 130 diverse flax (Linum usitatissimum L.) accessions. Comptes Rendus Biologies, 2017, 340(2):65-75.
doi: S1631-0691(16)30194-9 pmid: 28188068
[12] Stewart C N, Via L E. A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 1993, 14(5):748-750.
pmid: 8512694
[13] 王希, 陈丽, 赵春雷. 利用MISA工具对不同类型序列进行SSR标记位点挖掘的探讨. 中国农学通报, 2016, 32(10):150-156.
[14] 杜家菊, 陈志伟. 使用SPSS线性回归实现通径分析的方法. 生物学通报, 2010, 45(2):4-6.
[15] Yang J, Yu H Y, Li X J, et al. Genetic diversity and population structure of Commelina communis in China based on simple sequence repeat markers. Journal of Integrative Agriculture, 2018, 17(10):2292-2301.
doi: 10.1016/S2095-3119(18)61906-9
[16] 司二静, 张宇, 汪军成, 等. 大麦农艺性状与SSR标记的关联分析. 作物学报, 2015, 41(7):1064-1072.
[17] 孟亚雄, 孟祎林, 汪军成, 等. 青稞遗传多样性及其农艺性状与SSR标记的关联分析. 作物学报, 2016, 42(2):180-189.
[18] Chen X, Min D, Yasir T A, et al. Genetic diversity,population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS ONE, 2012, 7(9):e44510.
doi: 10.1371/journal.pone.0044510
[19] Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure:a simulation study. Molecular Ecology, 2005, 14:2611-2620.
pmid: 15969739
[20] 伊六喜, 高凤云, 周宇, 等. 胡麻种质资源表型性状的鉴定与分析. 中国油料作物学报, 2020, 42(3):91-99.
[21] Braulio J S-C, Iván Maureira-Butler, Gastón Muñoz, et al. SSR-based population structure,molecular diversity and linkage disequilibrium analysis of a collection of flax (Linum usitatissimum L.) varying for mucilage seed-coat content. Molecular Breeding, 2012, 30(2):875-888.
doi: 10.1007/s11032-011-9670-y
[22] Saha D, Rana R S, Das S, et al. Genome-wide regulatory gene-derived SSRs reveal genetic differentiation and population structure in fiber flax genotypes. Journal of Applied Genetics, 2019.
[23] 谭贤杰, 吴子恺, 程伟东, 等. 关联分析及其在植物遗传学研究中的应用. 植物学报, 2011(1):108-118.
[1] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[2] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[3] Cui Shiyou, Zhang Yang, Zhai Caijiao, Dong Shiqi, Zhang Jiao, Chen Pengjun, Han Jijun, Dai Qigen. Performance of Yield and Quality of Japonica Rice under Brackish Water Irrigation on the Reclaimed Tidal Flat [J]. Crops, 2022, 38(1): 137-141.
[4] Bai Junbing, Wang Yanjie, Wang Demei, Yang Yushuang, Wang Yujiao, Guo Dandan, Liu Zhewen, Chang Xuhong, Shi Shubing, Zhao Guangcai. Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels [J]. Crops, 2022, 38(1): 167-173.
[5] Li Runqing, Shen Yong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108 [J]. Crops, 2022, 38(1): 205-212.
[6] Feng Sufen, Liu Yuanjian, Xu Ruiqi, Zhang Wei. Analysis on Main Traits of Fresh Corn Varieties Recently Approved in Yunnan Province [J]. Crops, 2022, 38(1): 220-226.
[7] Zhang Shengquan, Ye Zhijie, Ren Liping, Gao Xinhuan, Wang Zheng, Yang Yongli, Mu Lei, Dong Yanhua, Chen Zhaobo. Analysis of Authorized Hybrid Wheat Varieties in China since The Tenth Five-Year Plan [J]. Crops, 2022, 38(1): 38-43.
[8] Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64.
[9] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
[10] Guo Mingming, Wang Kangjun, Zhang Guangxu, Sun Zhongwei, Li Jun, Zhang Yueshu, Dai Dandan, Chen Feng, Fan Jiwei. Regulation of Sowing Date and Row Spacing on Grain Yield and Quality of Wheat [J]. Crops, 2021, 37(6): 152-158.
[11] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
[12] Wang Chuliang, Song Wenfeng, Guan Luohao, Xie Jin, Huang Hao, Li Wangyang, Wang Wei. Effects of Film Mulching Method and Transplanting Seedling Age on Yield and Quality of Flue-Cured Tobacco in Honghe [J]. Crops, 2021, 37(6): 95-100.
[13] Liu Wei, Zhou Jianxiong, Xie Yuanyuan, Zhang Xu, Xiong Yousheng, Xu Xiangyu, Yuan Jiafu, Xiong Hanfeng. Effects of One-Time Basal Application of Nitrogen Fertilizer on Fresh Ear Yield, Quality and Nitrogen Utilization Efficiency of Summer-Sown Fresh Sweet Corn [J]. Crops, 2021, 37(5): 134-139.
[14] Ma Chao, Li Xiaohui, Ban Tiantian, Liang Die. Analysis and Comparison of Vegetables Nutritional Quality between Organic Cultivation and Conventional Cultivation [J]. Crops, 2021, 37(5): 166-171.
[15] Liu Wenlong, Ning Shanghui, Cao Mingfeng, Zhu Li, Gao Yuzhen, Zhang Xuewei, Wen Zixiang, Jiang Baodi, Jing Yanqiu, Deng Yong. Correlation Analysis of Soil Micronutrient and Chemical Components of Tobacco Leaves in Taoyuan County [J]. Crops, 2021, 37(5): 176-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!