Crops ›› 2022, Vol. 38 ›› Issue (2): 69-74.doi: 10.16035/j.issn.1001-7283.2022.02.010

Previous Articles     Next Articles

QTLs Mapping of Leaf Rust Resistance in Wheat Variety Zhoumai 22

Yan Xiaocui1(), Duan Zhenying2, Yang Huali2, Yao Zhanjun2,*(), Li Zaifeng1,*()   

  1. 1College of Plant Protection, Hebei Agricultural University/Biological Control Center for Plant Diseases and Plant Pests of Hebei, Baoding 071001, Hebei, China
    2College of Agronomy, Hebei Agricultural University/Key Laboratory of Research and Utilization of Crop Germplasm Resources in North China, Ministry of Education, Baoding 071001, Hebei, China
  • Received:2021-03-05 Revised:2021-05-11 Online:2022-04-15 Published:2022-04-24
  • Contact: Yao Zhanjun,Li Zaifeng E-mail:yanxiaocui101412@126.com;yzhj201@aliyun.com;lzf7551@aliyun.com

Abstract:

Leaf rust (LR) is one of the serious fungal diseases of wheat. Planting resistant cultivars is the most effective and safe way to control the disease. Due to the emergence of new pathotypes in the pathogen population, the resistance of the existing leaf rust resistance gene is gradually lost. Therefore, it is necessary to continuously explore and study new resistance sources to control this important disease. In the present study, the wheat variety Zhoumai 22 showed resistance to leaf rust at the adult plant stage. In order to analyze the genetic basis of resistance to leaf rust at the adult plant stage of Zhoumai 22, 255 F2:3 lines were obtained by crossing Zhoumai 22 with Mingxian 169. The resistance to leaf rust was identified at adult plant stage in field in two crop seasons, and the QTL for leaf rust resistance in the population was analyzed by composite interval mapping. The results showed that two QTLs for leaf rust resistance were detected at adult plant stage in the population, which were located on 1BL and 2BS chromosomes respectively. The two QTLs were designated as QLr.hebau-1BL and QLr.hebau-2BS, and they explained the phenotypic variation of 9.62%-11.88% and 16.89%-20.99%, respectively. The two QTLs showed stable resistance to leaf rust, and they were provided by Zhoumai 22. Results based on preliminary genetic mapping indicated that QLr.hebau-2BS is LrZH22, whereas QLr.hebau-1BL is a new leaf rust resistance QTL.

Key words: Wheat, Leaf rust, Adult-plant resistance, QTL mapping

Fig.1

Frequency distributions of the FDS of Zhoumai 22×Mingxian 169 F2:3 lines for leaf rust Arrows mean FDS average values for the parents ‘Zhoumai 22’ and ‘Mingxian 169’"

Table 1

FDS for leaf rust of 255 F2:3 from Zhoumai 22×Mingxian 169 in two years"

年份
Year
周麦22
Zhoumai 22
铭贤169
Mingxian 169
F2:3群体F2:3 population
均值
Mean
最小值
Min.
最大值
Max.
2014-2015 5 80 30.5 5 100
2015-2016 5 90 30.9 5 100

Table 2

Information of 55 SSR markers"

标记Marker 染色体Chromosome F引物(5’-3’)Forward primer (5’-3’) R引物(5’-3’)Reverse primer (5’-3’)
Xwmc336 1A GTCTTACCCCGCGATCTGC GCGGCCTGAGCTTCTTGAG
Xbarc148 1A GCGCAACCACAATGTATGCT GGGGTGTTTTCCTATTTCTT
Xbarc61 1B TGCATACATTGATTCATAACTCTCT TCTTCGAGCGTTATGATTGAT
Xwmc134 1B CCAAGCTGTCTGACTGCCATAg AGTATAGACCTCTGGCTCACGG
Xwmc766 1B AGATGGAGGGGATATGTTGTCAC TCGTCCCTGCTCATGCTG
Xcfd48 1B ATGGTTGATGGTGGGTGTTT ATGTATCGATGAAGGGCCAA
Xgpw1170 1B AGATCGTTCATCCGATCTGC CAATCTCAGTTTGATGTCCTTCAG
Xcfd65 1B AGACGATGAGAAGGAAGCCA CCTCCCTTGTTTTTGGGATT
Xcfd59 1B TCACCTGGAAAATGGTCACA AAGAAGGCTAGGGTTCAGGC
Glu-B3 1B GGTACCAACAACAACAACCC GGTACCAACAACAACAACCC
ω-secalin 1B ACCTTCCTCATCTTTGTCCT CCGATGCCTATACCACTACT
Xwmc44 1B GGTCTTCTGGGCTTTGATCCTG TGTTGCTAGGGACCCGTAGTGG
Xbarc81 1B GCGCTAGTGACCAAGTTGTTATATGA GCGGTTCGGAAAGTGCTATTCTACAGTAA
Xwmc31 1B GTTCACACGGTGATGACTCCCA CTGTTGCTTGCTCTGCACCCTT
Xwmc631 1B TTGCTCGCCCACCTTCTACC GGAAACCATGCGCTTCACAC
Xwmc432 1D ATGACACCAGATCTAGCAC AATATTGGCATGATTACACA
Xbarc212 2A GGCAACTGGAGTGATATAAATACCG CAGGAAGGGAGGAGAACAGAGG
Xbarc220 2A CCTCTGCCATAAACATCACCTCTC GGCCTCAACATCATGTGAAAGA
Xwms614 2A GATCACATGCATGCGTCATG TTTTACCGTTCCGGCCTT
Xbarc45 2B CCCAGATGCAATGAAACCACAAT GCGTAGAACTGAAGCGTAAAATTA
Xwms111 2B TCTGTAGGCTCTCTCCGACTG ACCTGATCAGATCCCACTCG
Xbarc91 2B TTCCCATAACGCCGATAGTA GCGTTTAATATTAGCTTCAAGATCAT
Xbarc55 2B GCGGTCAACACACTCCACTCCTCTCTC CGCTGCTCCCATTGCTCGCCGTTA
Xgwm148 2B GTGAGGCAGCAAGAGAGAAA CAAAGCTTGACTCAGACCAAA
Xgwm410 2B GCTTGAGACCGGCACAGT CGAGACCTTGAGGGTCTAGA
Xgwm374 2B ATAGTGTGTTGCATGCTGTGTG TCTAATTAGCGTTGGCTGCC
Xcfd44 2D AAACCCAATGGCTCTCACAC ATGGCCCAATTATGCAACTC
Xwms349 2D GGCTTCCAGAAAACAACAGG ATCGGTGCGTACCATCCTAC
Xwms155 3A CAATCATTTCCCCCTCCC AATCATTGGAAATCCATATGCC
Xbarc12 3A CGACAGAGTGATCACCCAAATATAA CATCGGTCTAATTGTCAATGTA
Xwms389 3B ATCATGTCGATCTCCTTGACG TGCCATGCACATTAGCAGAT
Xbarc147 3B GCGCCATTTATTCATGTTCCTCAT CCGCTTCACATGCAATCCGTTGAT
Xwms397 4A TGTCATGGATTATTTGGTCGG CTGCACTCTCGGTATACCAGC
Xbarc70 4A GCGAAAAACGATGCGACTCAAAG GCGCCATATAATTCAGACCCACAAAA
Xbarc10 4B GCGTGCCACTGTAACCTTTAGAAGA GCGAGTTGGAATTATTTGAATTAAACAAG
Xwmc68 4B TACACCTCGCGTGTGTAGCCAA GCTCGAATTCTGGCTCGGCAAC
Xwmc419 4B GTTTCGGATAAAACCGGAGTGC ACTACTTGTGGGTTATCACCAGCC
Xbarc20 4B GCGATCCACACTTTGCCTCTTTTACA GCGATGTCGGTTTTCAGCCTTTT
Xbarc1118 4D CGCAGTTGCCTCCCTTGTTAGATGTT CGCTTATTCCTTTCTCATTGGGTTTG
Xbarc155 5A GCGAGTATTGACGTCTTATTTTTGAA GCGTCATGAATTCTAACAATGTGCATA
Xbarc184 5B TTCGGTGATATCTTTTCCCCTTGA CCGAGTTGACTGTGTGGGCTTGCTG
Xwmc376 5B TCTCAACCACCGACTTGTAA ACATGTAATTGGGGACACTG
Xwms371 5B GACCAAGATATTCAAACTGGCC AGCTCAGCTTGCTTGGTACC
Xwms540 5B TCTCGCTGTGAAATCCTATTTC AGGCATGGATAGAGGGGC
Xbarc59 5B GCGTTGGCTAATCATCGTTCCTTC AGCACCCTACCCAGCGTCAGTCAAT
Xwms182 5D TGATGTAGTGAGCCCATAGGC TTGCACACAGCCAAATAAGG
Xgwm 107 6B ATTAATACCTGAGGGAGGTGC GGTCTCAGGAGCAAGAACAC
Xbarc198 6B CGCTGAAAAGAAGTGCCGCATTATGA CGCTGCCTTTTCTGGATTGCTTGTCA
Xwmc469 6D AGGTGGCTGCCAACG CAATTTTATCAGATGCCCGA
Xcfa2240 7A TGCAGCATGCATTTTAGCTT TGCCGCACTTATTTGTTCAC
Xwms282 7A TTGGCCGTGTAAGGCAG TCTCATTCACACACAACACTAGC
Xcfa2019 7A GACGAGCTAACTGCAGACCC CTCAATCCTGATGCGGAGAT
Xbarc65 7B CCCATGGCCAAGTATAATAT GCGAAAAGTCCATAGTCCATAGTCTC
Xwmc273 7B AGTTATGTATTCTCTCGAGCCTG AGTTATGTATTCTCTCGAGCCTG
Xbarc32 7B GCGTGAATCCGGAAACCCAATCTGTG TGGAGAACCTTCGCATTGTGTCATTA

Table 3

QTL for FDS to leaf rust in 255 F2:3 lines from Zhoumai 22/Mingxian 169"

年份
Year
QTL SSR标记区间
SSR marker interval
LOD值
LOD value
表型变异
Phenotypic variation (%)
加性效应
Add effect
贡献亲本
Contributing parent
2014-2015 QLr.hbau-1BL Xwmc31-Xwmc631 6.68 9.62 10.17 周麦22
QLr.hbau-2BS Xgwm374-Xbarc55 15.84 20.99 14.09 周麦22
2015-2016 QLr.hbau-1BL Xwmc31-Xwmc631 7.71 11.88 14.56 周麦22
QLr.hbau-2BS Xgwm374-Xbarc55 13.43 16.89 16.50 周麦22

Fig.2

Leaf rust adult-plant resistance QTL on chromosomes 1BL and 2BS in two years"

[1] Mcintosh R A, Wellings C R, Park R F. Wheat rusts: an atlas of resistance genes. Australia,Sydney:Kluwer Academic Publishers, 1995.
[2] 刘成, 闫红飞, 宫文萍, 等. 小麦叶锈病新抗源筛选研究. 植物遗传资源学报, 2013, 14(5):936-944.
[3] Dubin H J, Torres E. Causes and consequences of the 1976-1977 wheat leaf rust epidemic in Northwest Mexico. Annual Review of Phytopathology,1981, 19(1):41-49.
doi: 10.1146/annurev.py.19.090181.000353
[4] 董金皋. 农业植物病理学(北方本). 北京: 中国农业出版社, 2001.
[5] 彭红, 吕国强, 王江蓉. 河南省2015年小麦主要病害发生特点及原因分析. 中国植保导刊, 2016, 36(4):29-33.
[6] Johnson R. Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding. Mexico,DF,CIMMYT, 1988.
[7] Li Z F, Zheng T C, He Z H, et al. Molecular tagging of stripe rust resistance gene YrZH84in Chinese wheat line Zhou 8425B. Theoretical and Applied Genetics, 2006, 112(6):1098-1103.
pmid: 16450183
[8] Lin F, Chen X M. Genetics and molecular mapping of genes for race specific and all-stage resistance and non-specific high temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theoretical and Applied Genetics, 2007, 114:1277-1287.
pmid: 17318493
[9] Bjarko M E, Line R F. Heritability and number of genes controlling leaf rust resistance in four cultivars of wheat. Phytopathology, 1988(4), 78:457-461.
doi: 10.1094/Phyto-78-457
[10] Qureshi N, Bariana H, Kumran V V, et al. A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theoretical and Applied Genetics, 2018, 131(5):1-8.
doi: 10.1007/s00122-017-2954-9
[11] Lagudah E S, Krattinger S G, Herreraoessel S, et al. Gene-specifc markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics, 2009, 119(5):889-898.
doi: 10.1007/s00122-009-1097-z pmid: 19578829
[12] Kolmer J A, Lagudah E S, Lillemo M, et al. The Lr46 gene conditions partial adult plant resistance to stripe rust, stem rust, and powdery mildew in Thatcher Wheat. Crop Science, 2015, 55(6):2557-2565.
doi: 10.2135/cropsci2015.02.0082
[13] Herrera-Foessel S A, Singh R P, Lillemo M, et al. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theoretical and Applied Genetics, 2014, 127(4):781-789.
doi: 10.1007/s00122-013-2256-9 pmid: 24408377
[14] Röder M S, Korzun V, Wendehake K, et al. A microsatellite map of wheat. Genetics, 1998, 149(4):2007-2023.
doi: 10.1093/genetics/149.4.2007 pmid: 9691054
[15] 师令智, 朱琳, 任志宽, 等. 小麦品系19HRWSN-76的抗叶锈性研究. 植物遗传资源学报, 2016, 17(4):696-700.
[16] 王佳真, 师令智, 朱琳, 等. 小麦品种潍麦8号成株抗叶锈QTL定位. 植物遗传资源学报, 2015, 16(4):868-871.
[17] Wang C F, Yin G H, Xia X C, et al. Molecular mapping of a new temperature-sensitive gene LrZH22 for leaf rust resistance in Chinese wheat cultivar Zhoumai 22. Molecular Breeding, 2016, 36(2):1-10.
doi: 10.1007/s11032-015-0425-z
[18] Wang Y, Xie J Z, Zhang H Z, et al. Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theoretical and Applied Genetics, 2017, 130:2191-2201.
doi: 10.1007/s00122-017-2950-0
[19] Long D L, Kolmer J A. A North American system of nomenclature for Puccinia triticina. Phytopathology, 1989, 79:525-529.
doi: 10.1094/Phyto-79-525
[20] Li Z F, Xia X C, He Z H, et al. Seedling and slow rusting resistance to leaf rust in Chinese wheat cultivars. Plant Disease, 2010, 94(1):45-53.
doi: 10.1094/PDIS-94-1-0045 pmid: 30754399
[21] Sharp P J, Kreis M, Shewry P R. Location of β-amylase sequence in wheat and its relatives. Theoretical and Applied Genetics, 1988, 75(2):286-290.
doi: 10.1007/BF00303966
[22] Hao Y, Liu A, Wang Y, et al. Pm23:a new allele of Pm4,located on chromosome 2AL in wheat. Theoretical and Applied Genetics, 2008, 117(8):1205-1212.
doi: 10.1007/s00122-008-0827-y
[23] 王佳真, 李在峰, 李星, 等. 小麦品系5R618抗叶锈病基因的初步定位. 植物遗传资源学报, 2014, 15(6):1348-1351.
[24] Li T, Bai G. Lesion mimic associates with adult plant resistance to leaf rust infection in wheat. Theoretical and Applied Genetics, 2009, 119(1):13-21.
doi: 10.1007/s00122-009-1012-7
[25] Ren Y, He Z H, Li J, et al. QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/catbird. Theoretical and Applied Genetics, 2012, 125(6):1211-1221.
doi: 10.1007/s00122-012-1907-6
[26] Singh R P, Mujeeb-Kazi A, Huerta-Espino J. Lr46:a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology, 1988, 88(9):890-894.
doi: 10.1094/PHYTO.1998.88.9.890
[27] Qi A Y, Zhang P P, Zhou Y, et al. Mapping of QTL conferring leaf rust resistance in Chinese wheat lines W014204 and Fuyu 3 at adult plant stage. Journal of Integrative Agriculture, 2015, 15(1):18-28.
doi: 10.1016/S2095-3119(14)60974-6
[28] Seyfarth R, Feuillet C, Schachermayr G, et al. Molecular mapping of the adult-plant leaf rust resistance gene Lr13in wheat (Triticum aestivum L.). Journal of Genetics and Breeding, 2000, 54:193-194.
[29] Mulualem T K, Frank M Y, Colin W H, et al. Highly predictive SNP markers for efficient selection of the wheat leaf rust resistance gene Lr16. BMC Plant Biology, 2017, 17(1):45.
doi: 10.1186/s12870-017-0993-7 pmid: 28202046
[30] Faris J D, Li W L, Liu D J, et al. Candidate gene analysis of quantitative disease resistance in wheat. Theoretical and Applied Genetics, 1999, 98(2):219-225.
doi: 10.1007/s001220051061
[31] Park R F, Mohler V, Nazari K, et al. Characterisation and mapping of gene Lr73 conferring seedling resistance to Puccinia triticina in common wheat. Theoretical and Applied Genetics, 2014, 127(9):2041-2049.
doi: 10.1007/s00122-014-2359-y pmid: 25116148
[32] Zhang P P, Yin G H, Zhou Y, et al. QTL mapping of adult-plant resistance to leaf rust in the wheat cross Zhou 8425B/Chinese Spring using high-density SNP markers. Frontiers in Plant Science, 2017, 8:793.
doi: 10.3389/fpls.2017.00793
[33] Zhang P, Yan X, Gebrewahid T W, et al. Genome-wide association mapping of leaf rust and stripe rust resistance in wheat accessions using the 90K SNP array. Theoretical and Applied Genetics, 2021, 134(4):1233-1251.
doi: 10.1007/s00122-021-03769-3
[1] Wang Jian, Xu Ailing, Yang Na, Wang Ke, Xi Jilong, Wei Xiaodong, Zhang Jiancheng, Xi Tianyuan. Risk Assessment of Dry-Hot Wind in Different Sowing Dates of Wheat in Yuncheng Basin [J]. Crops, 2022, 38(2): 104-112.
[2] Hao Ruixuan, Sun Min, Ren Aixia, Lin Wen, Wang Peiru, Han Xuyang, Wang Qiang, Gao Zhiqiang. Research on the Relationship between Water Use and Dry Matter Accumulation and Quality of Wide Space Sowing Winter Wheat and the Regulation of Sowing Density [J]. Crops, 2022, 38(2): 119-126.
[3] Zhou Yuzhuang, Wang Rui, Yao Zhaosheng, Zhang Weijun, Liu Tao, Sun Chengming. Effects of Different Soil Surface Structures on Wheat Growth, Development and Yield [J]. Crops, 2022, 38(2): 127-133.
[4] Ma Ruiqi, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Effects of Topdressing Nitrogen Rates on Yield and Photosynthetic Performance of Different Quality Types of Wheat [J]. Crops, 2022, 38(2): 134-142.
[5] Luo Hanmin, Xiong Faqian, Qiu Lihang, Liu Jing, Duan Weixing, Gao Yijing, Qin Xiayan, Wu Jianming, Li Yangrui, Liu Junxian. Application Study of Molecular Markers Associated with Traits in Sugarcane Molecular Breeding [J]. Crops, 2022, 38(2): 35-43.
[6] Zhao Kai, Jin Xiujuan, Sun Lili, Yan Rongyue, Lu Juan, Guo Feng, Md Ashraful Islam, Shi Yugang, Sun Daizhen. The Role of Wheat Deplantation-Related Genes in Degradation of Chlorophyll in Spring Wheat Leaves [J]. Crops, 2022, 38(2): 81-88.
[7] Shi Xionggao, Pei Xuexia, Dang Jianyou, Zhang Dingyi. Research Progress on High-Yield, High-Quality, High-Efficiency and Ecology Cultivation of Wheat Micro-Sprinkling and Drip Fertigation [J]. Crops, 2022, 38(1): 1-10.
[8] Yang Cheng, Du Simeng, Zhang Deqi, Shi Yanhua, Li Xiangdong, Shao Yunhui, Fang Baoting, Wang Hanfang. Evaluation of Wheat Freezing Damage during Overwintering Period Based on Chlorophyll Fluorescence [J]. Crops, 2022, 38(1): 154-160.
[9] Bai Junbing, Wang Yanjie, Wang Demei, Yang Yushuang, Wang Yujiao, Guo Dandan, Liu Zhewen, Chang Xuhong, Shi Shubing, Zhao Guangcai. Response of Yield and Quality of Strong Gluten Wheat to Different Soil Conditions and Nitrogen Levels [J]. Crops, 2022, 38(1): 167-173.
[10] Zhang Shengquan, Ye Zhijie, Ren Liping, Gao Xinhuan, Wang Zheng, Yang Yongli, Mu Lei, Dong Yanhua, Chen Zhaobo. Analysis of Authorized Hybrid Wheat Varieties in China since The Tenth Five-Year Plan [J]. Crops, 2022, 38(1): 38-43.
[11] Song Quanhao, Jin Yan, Song Jiajing, Bai Dong, Zhao Lishang, Chen Jie, Zhu Tongquan. Evaluation the Breeding Utilizability of Synthetic Hexaploid Wheat in Huang-Huai Area [J]. Crops, 2022, 38(1): 56-64.
[12] Yin Guifang, Duan Ying, Yang Xiaolin, Cai Suyun, Wang Yanqing, Lu Wenjie, Sun Daowang, He Runli, Wang Lihua. Cloning and Bioinformatics Analysis of FtC4H Gene from Tartary Buckwheat [J]. Crops, 2022, 38(1): 77-83.
[13] Ge Changbin, Zhang Hongtao, Liao Ping’an, Cao Yanyan, Huang Jie, Qiao Jiliang, Guo Chunqiang, Wang Jun, Qin Suyan, Zhang Lan, Xia Mingcong, Cheng Bin, Zhang Liyi. Evaluation of Resistance to Fusarium Head Blight and Analysis of Agronomic Traits in Guixie 3-Derived Wheat Varieties (Lines) [J]. Crops, 2022, 38(1): 96-101.
[14] Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114.
[15] Yang Na, Xi Jilong, Wang Ke, Xi Tianyuan, Zhang Jiancheng, Yao Jingzhen, Wang Jian. Effects of Spring Irrigation on Yield and Water Utilization of Late-Sowing Winter Wheat in Southern Shanxi [J]. Crops, 2021, 37(6): 115-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!