Crops ›› 2022, Vol. 38 ›› Issue (4): 83-89.doi: 10.16035/j.issn.1001-7283.2022.04.012

Previous Articles     Next Articles

Genetic Analysis of Culm Gravity Height and Snapping Resistance in Common Buckwheat

Hu Dan()   

  1. Seed Administration Station of Gansu, Lanzhou 730030, Gansu, China
  • Received:2021-07-20 Revised:2021-08-17 Online:2022-08-15 Published:2022-08-22

Abstract:

Common buckwheat (Fagopyrum esculentum M.) is susceptible to lodging due to its slender and hollow stems. The culm gravity height and snapping resistance are recognized as important traits for lodging resistance. In this study, we developed the Pl, P2, Fl, Bl, B2 and F2 populations from the reciprocal crosses between Youqiao 2 (lodging-resistance) and Ukraine daliqiao (lodging-susceptible) and analyzed the genetic effects of culm gravity height and culm snapping resistance. The heredity of culm gravity height optimally fitted to the genetic model for one major genes with additive-dominance effects plus polygenes with additive-dominance-epistatic effects and two major genes with additive-dominance-epistatic effects plus polygenes with additive-dominance effects. The genetic model was based on additive effects. The heritability of major genes was greater than the heritability of polygenes, and the environmental variation was greater than genetic variation, indicating that the environment had a great effect on the traits of the culm gravity height. Proper cultivation measures could be used to reduce the culm gravity height and enhance lodging resistance of buckwheat. The heredity of culm snapping resistance optimally fitted to the genetic model for two major genes with additive-dominance-epistatic effects plus polygenes with additive-dominance-epistatic effects and two major genes with additive-dominance-epistatic effects plus polygenes with additive-dominance effects. The genetic model was based on additive effects. There were obvious gene interaction effects between the two major genes. The heritability of major genes were greater than the heritability of polygenes. The heritability of polygenes were not detected in the F2 generation. The heritability of the major genes was the highest in the F2 generation, which was 88.94%. It can be selected in the early generations to improve breeding efficiency.

Key words: Common buckwheat, Culm gravity height, Culm snapping resistance, Quantitative trait, Genetic analysis

Table 1

Culm gravity height and snapping resistance in the six generations from reciprocal combinations"

组合
Combination
世代
Generation
株数
Number of plants
茎秆重心高度Culm gravity height (cm) 茎秆抗折力Culm snapping resistance (g)
平均值Mean 变异系数CV (%) 平均值Mean 变异系数CV (%)
亲本Parent P1 25 50.92±4.09 11.09 1.31±0.61 2.15
P2 25 34.65±4.01 8.64 0.55±0.31 1.77
P1×P2 F1 28 43.18±5.14 8.40 0.75±0.37 2.03
B1 153 45.81±4.68 9.79 0.83±0.47 1.77
B2 165 38.22±4.18 9.14 0.65±0.41 1.59
F2 274 47.12±5.60 8.41 1.61±0.83 1.94
P2×P1 F1 28 40.59±3.63 11.18 0.57±0.32 1.78
B1 136 41.42±4.14 10.00 0.89±0.49 1.82
B2 133 43.82±4.23 10.36 0.97±0.53 1.83
F2 303 43.67±4.20 10.40 0.74±0.44 1.68

Fig.1

Frequency distributions of culm gravity height in F2 generations"

Fig.2

Frequency distributions of culm snapping resistance in F2 generations"

Table 2

AIC values and maximum log likelihood estimated values for culm gravity height in reciprocal crosses"

模型
Model
模型含义
Implication of model
极大对数似然函数值Maximum logarithmic likelihood value AIC值AIC value
P1×P2 P2×P1 P1×P2 P2×P1
A-1 1MG-AD -2078.56 -1928.99 4165.12 3865.97
A-2 1MG-A -2078.62 -1929.13 4163.24 3864.27
A-3 1MG-EAD -2117.65 -1946.92 4241.31 3899.84
A-4 1MG-AEND -2175.71 -1953.39 4357.42 3912.78
B-1 2MG-ADI -2055.04 -1894.84 4130.08 3809.68
B-2 2MG-AD -2088.13 -1928.38 4188.26 3868.76
B-3 2MG-A -2083.57 -1945.53 4175.14 3899.06
B-4 2MG-EA -2084.94 -1922.90 4175.88 3851.79
B-5 2MG-AED -2123.43 -1934.96 4254.86 3877.93
B-6 2MG-EEAD -2123.43 -1934.96 4252.86 3875.93
C-0 PG-ADI -2095.99 -1886.69 4211.98 3793.37
C-1 PG-AD -2121.85 -1918.88 4257.71 3851.75
D-0 MX1-AD-ADI -2049.39 -1886.94 4122.78 3797.88
D-1 MX1-AD-AD -2114.10 -1921.09 4246.21 3860.18
D-2 MX1-A-AD -2082.39 -1919.56 4180.79 3855.12
D-3 MX1-EAD-AD -2109.97 -1922.03 4235.94 3860.06
D-4 MX1-AEND-AD -2109.91 -1919.80 4235.82 3855.60
E-0 MX2-ADI-ADI -2037.94 -1886.94 4111.88 3809.88
E-1 MX2-ADI-AD -2046.85 -1877.63 4123.70 3785.27
E-2 MX2-AD-AD -2109.93 -1922.03 4241.86 3866.06
E-3 MX2-A-AD -2098.35 -2342.76 4214.71 4703.52
E-4 MX2-EA-AD -2109.98 -1922.03 4235.95 3860.06
E-5 MX2-AED-AD -2109.98 -1922.03 4237.96 3862.06
E-6 MX2-EEAD-AD -2109.98 -1922.03 4235.96 3860.06

Table 3

AIC value and maximum log likelihood estimated values for culm snapping resistance in reciprocal crosses"

模型
Model
模型含义
Implication of model
极大对数似然函数值Maximum logarithmic likelihood value AIC值AIC Value
P1×P2 P2×P1 P1×P2 P2×P1
A-1 1MG-AD -686.56 -448.03 1381.13 904.05
A-2 1MG-A -741.63 -457.25 1489.26 920.50
A-3 1MG-EAD -762.45 -448.43 1530.89 902.85
A-4 1MG-AEND -688.40 -469.48 1382.80 944.95
B-1 2MG-ADI -530.00 -387.31 1080.00 794.62
B-2 2MG-AD -646.40 -445.28 1304.81 902.56
B-3 2MG-A -691.52 -482.00 1391.04 972.00
B-4 2MG-EA -754.66 -457.19 1515.33 920.39
B-5 2MG-AED -764.07 -446.82 1536.13 901.64
B-6 2MG-EEAD -764.07 -452.16 1534.13 910.33
C-0 PG-ADI -635.01 -441.12 1290.02 902.24
C-1 PG-AD -704.65 -449.42 1423.30 912.83
D-0 MX1-AD-ADI -577.16 -430.13 1178.33 884.26
D-1 MX1-AD-AD -647.28 -420.88 1312.56 859.75
D-2 MX1-A-AD -628.45 -446.95 1272.89 909.90
D-3 MX1-EAD-AD -676.05 -449.32 1368.09 914.64
D-4 MX1-AEND-AD -639.31 -449.85 1294.62 915.70
E-0 MX2-ADI-ADI -497.42 -383.94 1030.84 803.87
E-1 MX2-ADI-AD -528.75 -343.74 1087.50 717.48
E-2 MX2-AD-AD -675.83 -449.32 1373.66 920.63
E-3 MX2-A-AD -671.03 -589.04 1360.06 1196.07
E-4 MX2-EA-AD -676.05 -449.22 1368.09 914.45
E-5 MX2-AED-AD -676.05 -421.19 1370.09 860.39
E-6 MX2-EEAD-AD -676.05 -449.32 1368.09 914.63

Table 4

Test for goodness-fit of selected genetic model for culm gravity height in reciprocal crosses"

组合
Combination
模型
Model
模型含义
Implication
of model
适合性检验
Test of goodness-fit
U12 U22 U32 nW2 Dn
P1×P2 D-0 2MG-EA 0 0 0 0 0
E-0 MX1-A-AD 0 0 1 0 0
E-1 MX2-ADI-AD 2 1 1 2 0
P2×P1 C-0 PG-ADI 0 0 0 0 0
D-0 MX1-AD-ADI 0 0 0 0 0
E-1 MX2-ADI-AD 0 0 0 0 0

Table 5

Test for goodness-fit of selected genetic model for culm snapping resistance in reciprocal crosses"

组合
Combination
模型
Model
模型含义
Implication
of model
适合性检验
Test of goodness-fit
U12 U22 U32 nW2 Dn
P1×P2 B-1 2MG-EA 3 2 1 3 0
E-0 MX1-A-AD 0 0 2 1 0
E-1 MX2-ADI-AD 2 1 2 2 0
P2×P1 B-1 PG-ADI 0 1 0 1 0
E-0 MX1-AD-ADI 0 0 0 2 0
E-1 MX2-ADI-AD 0 0 1 0 0

Table 6

Estimates of first order genetic parameters for culm gravity height and snapping resistance in reciprocal crosses"

一阶遗传参数
1st order genetic parameter
P1×P2 P2×P1
茎秆重心高度
Culm gravity height
茎秆抗折力
Culm snapping resistance
茎秆重心高度
Culm gravity height
茎秆抗折力
Culm snapping resistance
m 43.35 0.87 44.99 0.54
da 0.22 0.59 -3.30 -0.40
db 0.59 -3.30 -0.40
ha -0.08 -0.17 0.08 0.32
hb 0.14 -2.01 0.10
i 0.56 -2.75 0.43
jab 0.16 3.34 0.20
jba -0.15 5.44 0.73
l 0.23 -1.79 -0.81
[d] -1.76 0.34
[h] -0.50 0.51
ha/da -0.29 -0.02 -0.81
hb/db 0.23 0.61 -0.26

Table 7

Estimates of second order genetic parameters for culm gravity height and snapping resistance in reciprocal crosses"

组合
Combination
二阶遗传参数
2nd order genetic parameter
茎秆重心高度Culm gravity height 茎秆抗折力Culm snapping resistance
B1 B2 F2 B1 B2 F2
P1×P2 σp2 21.92 18.41 35.95 0.22 0.17 0.69
σmg2 0.17 0.00 0.16 0.13 0.07 0.59
σpg2 3.34 0.00 17.39 0.00 0.00 0.00
σe2 18.41 18.41 18.41 0.10 0.10 0.10
hmg2 (%) 10.00 0.00 0.00 57.26 43.22 86.13
hpg2 (%) 15.25 0.00 48.00 0.00 0.00 0.00
P2×P1 σp2 23.40 17.89 20.37 0.24 0.29 0.23
σmg2 13.73 7.12 10.71 0.17 0.20 0.18
σpg2 0.00 1.11 0.00 0.02 0.04 0.00
σe2 9.66 9.66 9.66 0.05 0.05 0.05
hmg2 (%) 80.22 39.78 60.61 69.94 68.12 91.75
hpg2 (%) 0.00 6.20 0.00 7.84 13.43 0.00
[1] 林汝法, 柴岩, 廖琴, 等. 中国小杂粮. 北京: 中国农业科技出版社, 2002.
[2] 徐丽华, 潘宏, 赵英明. 荞麦——一种新兴的多用途作物. 国外农学-杂粮作物, 1998(3):51-53.
[3] 张以忠, 陈庆富. 荞麦研究的现状与展望. 种子, 2004(3):39-42.
[4] 张美莉. 萌发荞麦种子内黄酮与蛋白质的动态变化及抗氧化性研究. 北京: 中国农业大学, 2004.
[5] Awatsuhara R, Harada K, Maeda T. Antioxidative activity of the buckwheat polyphenol rutin in combination with ovalbumin. Molecular Medicine Reports, 2010, 3(1):121-125.
doi: 10.3892/mmr_00000228 pmid: 21472210
[6] Griffith J Q, Couch J F, Lindauer M A. Effect of rutin on increased capillary fragility in man. Experimental Biology and Medicine, 1944, 55(3):228-229.
doi: 10.3181/00379727-55-14532
[7] Jiang P, Burczynski F, Campbrll C, et al. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum,F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Research International, 2007, 40(3):356-364.
doi: 10.1016/j.foodres.2006.10.009
[8] Wieslander G, Fabjan N, Vogrincic M, et al. Eating buckwheat cookies is associated with the reduction in serum levels of myeloperoxidase and cholesterol:a double blind crossover study in day-care centre staffs. Tohoku Journal of Experimental Medicine, 2011, 225(2):123-130.
pmid: 21931228
[9] Hagiwara M, Izusawa H, Inoue N, et al. Varietal differences of shoot growth characters related to lodging in Tartary buckwheat. Fagopyrum, 1999, 16:67-72.
[10] 郭志利, 孙常青. 北方旱地荞麦抗倒栽培技术研究. 杂粮作物, 2007, 27(5):364-366.
[11] 刘星贝, 汪灿, 易泽林, 等. 烯效唑干拌种对甜荞茎秆抗倒性能的影响. 作物学报, 2016, 42(1):93-103.
[12] 刘星贝, 吴东倩, 易泽林, 等. 喷施烯效唑对甜荞茎秆抗倒性能及产量的影响. 中国农业科学, 2015, 48(24):4903-4915.
[13] 汪灿, 阮仁武, 易泽林, 等. 荞麦茎秆解剖结构和木质素代谢及其与抗倒性的关系. 作物学报, 2014, 40(10):1846-1856.
[14] 汪灿, 阮仁武, 易泽林, 等. 不同荞麦品种抗倒伏能力与根系及茎秆性状的关系. 西南大学学报(自然科学版), 2015, 37(1):65-71.
[15] Wang C, Hu D, Yi Z L, et al. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). Field Crops Research, 2015, 180:46-53.
doi: 10.1016/j.fcr.2015.05.009
[16] 佘恒志, 聂蛟, 易泽林, 等. 施硅量对甜荞倒伏及产量的影响. 中国农业科学, 2018, 51(14):2664-2674.
[17] 邵庆勤. 叶面喷施多效唑提高小麦抗倒伏能力的生理机理研究. 南京:南京农业大学, 2017.
[18] 杨文飞, 文廷刚, 孙爱侠, 等. 新型增产抗倒营养剂“劲丰谷德”对小麦抗倒性和产量的影响. 金陵科技学院学报, 2019, 35(1):65-68.
[19] 袁圆, 汪波, 周广生, 等. 播期和种植密度对油菜产量和茎秆抗倒性的影响. 中国农业科学, 2021, 54(8):1613-1626.
[20] 盖钧镒, 章元明, 王建康. 植物数量性状遗传体系. 北京: 科学出版社, 2003.
[21] Stojsin R, 边静, 张满珍. 玉米籽粒产量和抗倒伏的重要茎秆性状的遗传. 杂粮作物, 1992(3):6-9.
[22] 李得孝, 员海燕, 武玉华, 等. 玉米抗倒伏性状的遗传分析. 西北农业学报, 2004, 13(2):43-46.
[23] 梁康迳, 林文雄. 水稻茎杆抗倒性的遗传及基因型×环境互作效应研究. 福建农业学报, 2000, 15(3):9-15.
[24] 顾慧, 戚存扣. 甘蓝型油菜(Brassica napus L.)抗倒伏性状的主基因+多基因遗传分析. 作物学报, 2008, 34(3):376-381.
[25] 李洪戈, 张丽萍, 伍晓明. 甘蓝型油菜茎秆强度性状的主基因+多基因遗传分析. 中国油料作物学报, 2018, 40(1):10-17.
[26] 李英双, 胡丹, 易泽林, 等. 甜荞株高和茎粗的遗传分析. 作物学报, 2018, 44(8):1185-1195.
[27] 张倩. 甘蓝型油菜主要株型性状的遗传分析和QTL初步定位. 重庆:西南大学, 2013.
[1] Rong Kewei, Liu Bojuan, Lu Yuelei, Chen Yong, Luo Ping, Zhao Kang, Hao Zhuanfang, Gao Wenwei. Genetic Characteristics of MAGIC Population and Its Application in Crop Stress Tolerance [J]. Crops, 2022, 38(3): 9-19.
[2] Li Zhongnan, Wang Yueren, Zhang Yanhui, Wu Shenghui, Qu Haitao, Xu Zhengxue, Li Guangfa. Genetic Analysis of Super Multiple Ear Row Number in DH Line 15D969 of Maize [J]. Crops, 2020, 36(5): 88-92.
[3] Zhang Xiaoyu,Zhang Yaling,Jin Xuehui,Yan Tianyu,Zhao Ze. Genetic Analysis of Pathogenicity of Sexual Progeny of Magnaporthe oryzae [J]. Crops, 2020, 36(2): 182-187.
[4] Narong Shi,Jingjing Li,Huiyu Wu,Daojie Sun,Yi Feng,Hui Wang,Xinlun Liu,Lingli Zhang. Genetic Relationship of Xinong 979 and Thinopyrum ponticum Based on Pedigree Analysis and Molecular Markers [J]. Crops, 2019, 35(1): 15-21.
[5] Li Zhang,Zantang Li,Shiyin Wang,Yanchao Ma,Yang Dongfang,Xueyong Li,Jiang Xu. Physiological and Genetic Analysis of Rice Mutant osnad1 Defective in Nitrogen Absorption [J]. Crops, 2018, 34(3): 68-76.
[6] Xiaojuan Zhang,Fuping Zhou,Yizhong Zhang,Qiang Shao,Xinqi Fan,Yong Liu,Qingshan Liu. Study on Sterile Lines of Multiple Grain Sorghum [J]. Crops, 2017, 33(2): 72-75.
[7] Xiushi Yang,Zhongxian Guo,Huimin Guo,Hui Wang,Sancai Liu. Effects of Sowing Date and Seeding Density on the Yield and Quality of Buckwheat [J]. Crops, 2017, 33(1): 88-93.
[8] Zhongnan Li, Kewei Wang, Yueren Wang, Shenghui Wu, Guangfa Li. Genetic Analysis on Chlorophyll SPAD Value of Seedling Leaf in Maize Variety Xianyu 335 [J]. Crops, 2016, 32(4): 101-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!