Crops ›› 2022, Vol. 38 ›› Issue (6): 54-60.doi: 10.16035/j.issn.1001-7283.2022.06.007

Previous Articles     Next Articles

Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage

Li Wangsheng1,2(), Wang Xueqian1,2, Yin Xilong1,2, Shi Yang1,2, Liu Dali1,2, Tan Wenbo1,2, Xing Wang1,2()   

  1. 1National Medium-Term Repository of Sugar Beet Germplasm, Heilongjiang University, Harbin 150080, Heilongjiang, China
    2College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, Heilongjiang, China
  • Received:2022-04-21 Revised:2022-06-30 Online:2022-12-15 Published:2022-12-21
  • Contact: Xing Wang E-mail:1595764058@qq.com;xyjiayou086@163.com

Abstract:

In this study, 336 sugar beet germplasm resources were measured at the seedling stage along with 15 phenotypic, physiological and biochemical indices, and the drought tolerance of these resources was thoroughly assessed using the affiliation function method, principal component analysis, cluster analysis and correlation analysis. The results showed that the indicators of leaf dry weight, plant height, root length, leaf fresh weight, root fresh weight, root dry weight, leaf saturated fresh weight and leaf relative water content were significantly decreased, and root to crown ratio, soluble sugar content, soluble protein content and proline content under drought stress were significantly higher than the control. The principal component analysis transformed the 15 single indicators into six composite indicators that could represent 75.95% of the original data information. Cluster analysis divided the 336 sugar beet germplasm resources into five groups, including 16 germplasms with strong drought tolerance, 49 with relatively strong drought tolerance, 109 with medium drought tolerance, 79 with relatively weak drought tolerance and 83 with weak drought tolerance. Correlation analysis showed that embryonic axis diameter, plant height, root length, leaf fresh weight, root fresh weight, root dry weight, leaf dry weight, leaf saturated fresh weight, relative leaf water content and root-shoot ratio were significantly correlated with D values.

Key words: Sugar beet, Germplasm resources, Drought stress, Comprehensive evaluation

Fig.1

Effects of drought stress on indexes of 336 sugar beet germplasm resources"

Table 1

Principal component analysis of various indexes of sugar beet germplasm resources"

指标Index F1 F2 F3 F4 F5 F6
胚轴直径EAD 0.36 0.08 0.14 0.09 0.01 0.10
株高PH 0.29 -0.03 0.09 -0.21 0.13 -0.16
根长RL 0.18 -0.10 0.19 -0.20 -0.06 -0.61
叶鲜重LFW 0.40 0.04 -0.14 0.00 -0.03 0.03
根鲜重RFW 0.38 -0.07 0.21 0.11 0.02 0.13
根干重RDW 0.34 -0.02 0.18 0.19 -0.00 0.20
叶干重LDW 0.37 0.07 -0.04 0.07 -0.02 -0.01
叶片饱和鲜重LSFW 0.40 0.01 -0.10 0.00 -0.04 0.02
叶片相对含水量RLW 0.14 0.17 -0.47 -0.16 0.12 0.15
根冠比RSR -0.11 -0.20 0.56 0.38 0.02 0.23
可溶性糖含量SS content -0.02 0.55 -0.16 0.31 -0.36 -0.10
可溶性蛋白含量SP content -0.05 0.58 0.20 0.13 -0.19 0.14
超氧化物歧化酶活性SOD activity -0.01 0.23 0.30 -0.72 -0.02 0.46
脯氨酸含量Pro content -0.01 0.34 0.38 -0.16 0.02 -0.47
丙二醛含量MDA content -0.03 0.32 0.01 0.17 0.90 -0.04
特征根Characteristic root 5.47 1.66 1.41 1.00 0.94 0.92
累计贡献率Cumulative contribution rate (%) 36.47 47.52 56.88 63.56 69.82 75.95
因子权重Factor weight 0.48 0.15 0.12 0.09 0.08 0.08

Fig.2

Principal component analysis of indexes of 336 sugar beet germplasm resources"

Fig.3

Scatter plot of D values of 336 sugar beet germplasm resources"

Fig.4

Cluster diagram of drought tolerance analysis of 336 sugar beet germplasm resources"

Fig.5

Correlation analysis between D value of drought tolerance measure and drought tolerance coefficient of each index"

[1] 罗振福, 贺建华, 谭碧娥. 甜菜粕的资源化利用及其在猪营养中的应用. 家畜生态学报, 2020, 41(1):81-85.
[2] 赵狄, 练桂丽, Morris R J, et al. 少量无机硝酸盐或甜菜根可有效抑制盐诱发的血压升高. 中华高血压杂志, 2019, 27(6):590.
[3] 丁一上, 杨德林, 吴越, 等. 盐酸甜菜碱的降压作用及其机理. 石河子医学院学报, 1993(2):65-69,73.
[4] 蔡东明, 陈耀锋, 王长发, 等. 我国农作物种质资源储备现状与分析. 农业与技术, 2021, 41(1):8-10.
[5] 王茂芊, 崔平. 我国收集保存甜菜种质资源的数量与类型分析. 中国甜菜糖业, 2006(3):36-39.
[6] 刘华君, 王燕飞, 李翠芳, 等. 我国甜菜抗旱与耐盐性研究进展. 中国糖料, 2010(4):52-54,58.
[7] 刘凯, 聂格格, 张森. 中国1951-2018年气温和降水的时空演变特征研究. 地球科学进展, 2020, 35(11):1113-1126.
doi: 10.11867/j.issn.1001-8166.2020.102
[8] 张净, 王锦霞, 郭萌萌, 等. 甜菜幼苗对干旱胁迫的适应机制. 中国农学通报, 2020, 36(32):1-7.
[9] 王兴荣, 张彦军, 李玥, 等. 干旱胁迫对大豆生长的影响及抗旱性评价方法与指标筛选. 植物遗传资源学报, 2018, 19(1):49-56.
[10] 张海平, 张俊峰, 陈妍, 等. 大豆种质资源萌发期耐旱性评价. 植物遗传资源学报, 2021, 22(1):130-138.
[11] 田春艳, 边芯, 俞华先, 等. 云瑞甘蔗创新亲本抗旱性综合评价. 植物遗传资源学报, 2019, 20(3):610-623.
[12] 汪灿, 周棱波, 张国兵, 等. 薏苡种质资源萌发期抗旱性鉴定及抗旱指标筛选. 植物遗传资源学报, 2017, 18(5):846-859.
[13] 曾辉, 曹苑南, 王述民, 等. 30份普通菜豆苗期抗旱性鉴定及抗旱指标的确定. 植物遗传资源学报, 2016, 17(6):1014-1021.
[14] 李国龙, 孙亚卿, 邵世勤, 等. 甜菜幼苗叶片抗氧化系统对干旱胁迫的响应. 作物杂志, 2017(5):73-79.
[15] 李国龙, 孙亚卿, 邵世勤, 等. 甜菜幼苗叶片渗透调节系统及部分激素对干旱胁迫的响应. 江苏农业科学, 2018, 46(7):80-84.
[16] Aghaiee N, Zarei L, Cheghamirza K. Evaluation of some morpho- physiological characteristics in strawberry under different moisture stress regimes. Journal of Berry Research, 2019, 9(1):83-93.
doi: 10.3233/JBR-180306
[17] 原小燕, 铁朝良, 符明联, 等. 甘芥种间杂交后代DH系花期抗旱性评价. 干旱地区农业研究, 2017, 35(2):79-88.
[18] Sukmarani D, Proklamasiningsih E, Susanto A H, et al. Superoxide dismutase (SOD) activity of ceriops zippeliana in Segara Anakan Cilacap (Indonesia) under heavy metal accumulation. Biodiversitas Journal of Biological Diversity, 2021, 22(12):5627-5635.
[19] Artyszak A, Gozdowski D, Kucińska K. Impact of foliar fertilization on the content of silicon and macronutrients in sugar beet. Plants, 2019, 8(5):136.
doi: 10.3390/plants8050136
[20] Sánchez F J, Manzanares M, de Andres E F, et al. Turgor maintenance,osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Research, 1998, 59(3):225-235.
doi: 10.1016/S0378-4290(98)00125-7
[21] 赵振宁, 赵宝勰. 不同大豆品种在萌发期对干旱胁迫的生理响应及抗旱性评价. 干旱地区农业研究, 2018, 36(2):131-136.
[22] 谢小玉, 张霞, 张兵. 油菜苗期抗旱性评价及抗旱相关指标变化分析. 中国农业科学, 2013, 46(3):476-485.
[23] 李小玉, 田宏先, 王瑞霞. 灰色关联度分析和主成分分析在油菜抗旱育种中的应用. 种子, 2021, 40(9):92-97.
[24] 李阳阳, 李驰, 任俊洋, 等. 甘蓝型油菜苗期耐旱性综合评价与耐旱性鉴定指标筛选. 中国生态农业学报, 2021, 29(8):1327-1338.
[25] Kuromori T, Fujita M, Takahashi F, et al. Inter-tissue and inter-organ signaling in drought stress response and phenotyping of drought tolerance. The Plant Journal, 2022, 109(2):342-358.
doi: 10.1111/tpj.15619
[26] Karimi A, Tabari Kouchaksaraei M, Neirynck J. Drought stress tolerance in seedlings of four deciduous species,common in nurseries of semi-arid region of Iran. Ecopersia, 2022, 10(2):165-172.
[27] Rejeb K B, Abdelly C, Savouré A. How reactive oxygen species and proline face stress together. Plant Physiology and Biochemistry, 2014, 80:278-284.
doi: 10.1016/j.plaphy.2014.04.007 pmid: 24813727
[28] Zou T, Lin R, Pu L, et al. Genome-wide identification,structure characterization,expression pattern profiling,and substrate specificity of the metal tolerance protein family in Canavalia rosea (Sw.) DC. Plants, 2021, 10(7):1340.
doi: 10.3390/plants10071340
[29] Ozturk M, Turkyilmaz Unal B, García-Caparrós P, et al. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 2021, 172(2):1321-1335.
doi: 10.1111/ppl.13297
[30] 甄子龙, 侯建华, 伊六喜, 等. 向日葵种质资源苗期抗旱性鉴定及抗旱指标筛选. 干旱地区农业研究, 2021, 39(4):228-238.
[31] Li P, Ma B, Palta J A, et al. Wheat breeding highlights drought tolerance while ignores the advantages of drought avoidance:A meta-analysis. European Journal of Agronomy, 2021, 122:126196.
doi: 10.1016/j.eja.2020.126196
[32] Yang X, Lu M, Wang Y, et al. Response mechanism of plants to drought stress. Horticulturae, 2021, 7(3):50.
doi: 10.3390/horticulturae7030050
[33] 路之娟, 张永清, 张楚, 等. 不同基因型苦荞苗期抗旱性综合评价及指标筛选. 中国农业科学, 2017, 50(17):3311-3322.
[1] Yin Xilong, Shi Yang, Li Wangsheng, Xing Wang. Photosynthetic Physiological Response to Drought Stress in Sugar Beet at Seedling Stage [J]. Crops, 2022, 38(6): 152-158.
[2] Zhang Ruidong, Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong. Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress [J]. Crops, 2022, 38(6): 234-240.
[3] Guo Huanle, Tang Bin, Li Han, Cao Zhongyang, Zeng Qiang, Liu Liangwu, Chen Zhihui. Comprehensive Evaluation of Phenotypic Traits and Classification of Maize Landraces in Hunan Province [J]. Crops, 2022, 38(6): 33-41.
[4] Qi Guangxun, Dong Lingchao, Zhang Wei, Yuan Cuiping, Liu Xiaodong, Wang Yingnan, Dong Yingshan, Wang Yumin, Zhao Hongkun. Evaluation of Resistance to Soybean Mosaic Virus Strain 3 (SMV3) in Foreign Soybean Germplasm Resources [J]. Crops, 2022, 38(6): 70-74.
[5] Hou Jingjing, Jin Fang, Zhao Li, Wang Bin. Comprehensive Evaluation of Agronomic and Quality Traits of 16 New Oil Flax Lines [J]. Crops, 2022, 38(5): 42-48.
[6] Pang Xingyue, Wan Lin, Li Su, Wang Yuhang, Liu Chen, Xiao Xiaolu, Li Xinhao, Ma Ni. Effects of Exogenous SLs and Nano-K2MoO4 on Seed Germination of Brassica napus L. under Drought Stress [J]. Crops, 2022, 38(4): 214-220.
[7] Lü Jianzhen, Ren Ying, Wang Hongyong, Zhang Tingjun, Ma Jianping, Zhao Kai. Comprehensive Phenotype Evaluation of 264 Major Foxtail Millet Bred Varieties (Lines) [J]. Crops, 2022, 38(4): 22-31.
[8] Zhang Chunyan, Zhuang Kezhang, Wu Ronghua, Li Jing, Li Xinxin, Wang Heng, Dong Xichen, Xu Geng, Wu Benhua. Comprehensive Evaluation of 11 Feed Oat Varieties in Southern Shandong by DTOPSIS Method Based on Entropy Weighting [J]. Crops, 2022, 38(4): 62-68.
[9] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[10] Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167.
[11] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
[12] Zhao Yanfei, Wang Jiyong. Germplasm Resource Protection and Breeding Innovation Status and Development Countermeasures——Taking Hunan and Hainan Provinces as Examples [J]. Crops, 2022, 38(2): 1-5.
[13] Cai Qiqi, Wang Gang, Dong Yinzhuang, Yu Lihua, Wang Yuguang, Geng Gui. Effects of Different Neutral Salt Stress on Photosynthesis and Antioxidant Enzyme System of Sugar Beet Seedlings [J]. Crops, 2022, 38(1): 130-136.
[14] Du Xin, Li Bo, Mao Luxiao, Chen Wei, Zhang Yuxian, Cao Liang. Effects of Melatonin on Yield and AsA-GSH Cycle in Soybean under Drought Stress [J]. Crops, 2022, 38(1): 174-178.
[15] Gao Zhanning, Wang Shujie, Feng Hui, Xue Zhenggang, Yang Yongqian, Song Xiaopeng, Jie Yuanfen. Comprehensive Evaluation of Two-Rowed Barley Varieties (Lines) [J]. Crops, 2022, 38(1): 70-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!