Crops ›› 2023, Vol. 39 ›› Issue (2): 100-105.doi: 10.16035/j.issn.1001-7283.2023.02.014

Previous Articles     Next Articles

Effects of Spraying Rare Earth Micro-Fertilizer on Growth and Physiological Characteristics of Flue-Cured Tobacco under Drought Stress

Shan Jiaye1(), Zhang Xuewei2(), Yan Min3, Yang Jian3, Wang Fei3, He Jixian3, Hu Gang3, Wang Yuchen1, Jing Yanqiu1(), Lei Qiang3()   

  1. 1College of Tobacco, Henan Agricultural University, Zhengzhou 450002, Hehan, China
    2Guangdong Tobacco Industry Co., Ltd., Guangzhou 510000, Guangdong, China
    3Sichuan Branch of China National Tobacco Company, Chengdu 610041, Sichuan, China
  • Received:2022-03-01 Revised:2022-04-18 Online:2023-04-15 Published:2023-04-11

Abstract:

A pot experiment was conducted to study the effects of different concentrations of rare earth micro- fertilizer on the growth and physiological characteristics of flue-cured tobacco under drought stress in vigorous growth stage. The results showed that, low concentration (50, 100mg/L) of rare earth micro-fertilizer promoted the root development of flue-cured tobacco, significantly improved the root activity and root biomass, while high concentration (300mg/L) of rare earth micro-fertilizer showed a certain inhibitory effects. Different concentrations of rare earth micro-fertilizer could improve the activities of superoxide dismutase and peroxidase, maintain the activity of catalase, and enhance the accumulation of proline and soluble protein, but the effects was not obvious with the increase of concentration, or even reverse. 100mg/L rare earth micro-fertilizer treatment had the most prominent performance in promoting the growth of tobacco plants, opening tobacco leaves, improving stress resistance and the drought resistance.

Key words: Rare earth micro-fertilizer, Flue-cured tobacco, Drought stress, Reclaimed water, Roots, Antioxidant enzymes

Table 1

Effects of different treatments on agronomic characters of tobacco"

处理
Treatment
日期(月-日)
Date
(month-day)
最大叶长
Maximum
length of leaf
最大叶宽
Maximum
width of leaf
最大叶面积
Maximum area
of leaf (cm2)
节距
Pitch
(cm)
茎围
Stem girth
(cm)
株高
Plant height
(cm)
CK 06-09 47.97±4.76a 19.93±0.43a 605.74±47.13a 2.33±0.16a 5.56±0.42a 26.50±2.15a
06-19 63.66±2.76a 21.94±0.44b 885.83±20.67b 2.95±0.37a 6.21±0.67a 36.83±2.85c
增幅 32.71% 10.09% 46.24% 26.88% 11.69% 38.98%
T1 06-09 45.85±3.62a 19.71±0.16a 573.19±41.57a 2.25±0.30a 6.18±0.96a 29.83±1.99a
06-19 65.45±2.18a 21.52±1.65b 895.20±98.26b 3.10±0.18a 6.95±0.41a 44.27±1.29b
增幅 42.75% 9.18% 56.18% 37.78% 12.46% 48.41%
T2 06-09 48.46±2.94a 19.91±0.51a 612.92±52.69a 2.50±0.51a 6.35±0.70a 30.67±4.33a
06-19 67.29±2.96a 24.87±0.58a 1062.50±71.20a 3.59±0.09a 6.85±0.72a 51.28±1.05a
增幅 38.86% 24.91% 73.35% 43.60% 7.87% 67.20%
T3 06-09 46.74±2.99a 19.89±0.18a 589.79±32.87a 2.77±0.14a 6.05±0.35a 31.25±3.22a
06-19 61.38±5.69a 20.73±0.59b 806.10±53.48b 3.35±0.33a 6.55±0.31a 51.85±4.56a
增幅 31.32% 4.22% 36.68% 20.94% 8.26% 65.92%

Table 2

Effects of different treatments on tobacco biomass"

处理
Treatment
日期(月-日)
Date (month-day)
生物量Biomass (g) 根冠比
Root shoot ratio
根系Root
Root system
茎叶Shoot
Cauline leaf
总量Biomass
Overall amount
CK 06-09 6.46±0.56ab 30.22±2.96a 36.68±4.16a 0.22±0.02ab
06-19 9.24±0.86ab 41.07±1.94a 50.31±4.11a 0.23±0.03ab
增幅 43.03% 35.90% 37.16% 4.54%
T1 06-09 5.96±0.79ab 26.36±4.79a 32.32±6.87a 0.23±0.01ab
06-19 8.92±1.28b 36.84±0.28a 45.76±1.79ab 0.24±0.02ab
增幅 49.66% 39.76% 41.58% 4.35%
T2 06-09 6.90±0.30a 28.10±1.89a 35.00±7.07a 0.25±0.04a
06-19 10.56±0.18a 39.51±6.93a 50.07±3.42a 0.27±0.03a
增幅 53.04% 40.60% 43.06% 8.00%
T3 06-09 5.48±0.85b 28.79±3.64a 34.27±2.16a 0.19±0.02b
06-19 7.23±0.46c 35.60±6.71a 42.83±1.87b 0.20±0.02b
增幅 31.93% 23.65% 24.98% 5.26%

Fig.1

Root activities of different rare earth fertilizer treatments under drought stress The different lowercase letters mean significant difference between different treatments (P < 0.05), the same below"

Fig.2

Effects of different treatments on antioxidant enzyme activities of tobacco"

Fig.3

Effects of different treatments on MDA content in tobacco"

Fig.4

Effects of different treatments on tobacco osmoregulation substances"

[1] 吴曼, 金苇, 李影, 等. 干旱胁迫下红、绿茎马齿苋幼苗的生理生化特性比较. 湖北师范大学学报(自然科学版), 2022, 42(1):38-45.
[2] 杨阳, 申双和, 马绎皓, 等. 干旱对作物生长的影响机制及抗旱技术的研究进展. 科技通报, 2020, 36(1):8-15.
[3] 王宇辰, 陈孟起, 李耀光, 等. 镧处理对干旱胁迫下烟草根系形态与生理特征的影响. 中国稀土学报, 2018, 36(3):319-327.
[4] 郭丽珠, 陈邦, 周攀, 等. 硝酸镧对长柄扁桃试管苗生根的影响. 中国稀土学报, 2014, 32(5):628-635.
[5] 周荷益, 陶宗娅, 吴国, 等. 镧La3+对盐胁迫下小麦幼苗活性氧代谢的影响. 西北农业学报, 2013, 22(10):90-95.
[6] 李庆华. 稀土元素镧对刺槐幼苗抗旱性的影响. 中南林业科技大学学报, 2014, 34(12):62-65.
[7] 金姝兰, 黄益宗. 稀土元素对农田生态系统的影响研究进展. 生态学报, 2013, 33(16):4836-4845.
[8] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006.
[9] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导. 北京: 高等教育出版社, 2009.
[10] 周娟, 范红丽, 白丽甜, 等. 模拟干旱胁迫对发状念珠藻抗氧化酶系统和渗透调节物质的影响. 新疆农业科学, 2016, 53(5):915-920.
[11] 穆真. 清香型与浓香型烟区土壤稀土元素含量及主要化学指标比较研究. 北京: 中国农业科学院, 2013.
[12] 高华军, 黄瑾, 林北森, 等. 稀土元素肥料对烤烟产量及品质的影响. 河南农业科学, 2011, 40(5):77-79.
[13] 张长云. 稀土元素的生理机制与烤烟生产. 中国农学通报, 2007, 23(8):221-224.
[14] 李鹏辉, 向金友, 王林, 等. 干旱胁迫下外源褪黑素对烟草幼苗生理特性的影响. 中国农业科技导报, 2019, 21(5):41-48.
doi: 10.13304/j.nykjdb.2018.0312
[15] 唐加红. 稀土和NO对干旱胁迫下小麦抗氧化系统的影响. 南京:南京师范大学, 2011.
[16] 张权, 张晓阳, 杨景全, 等. 稀土肥料对烤烟生长过程中根系发育的影响. 山西农业科学, 2018, 46(3):407-411,425.
[17] 韩多红, 王恩军, 张勇. 稀土微肥对干旱胁迫下黄芪幼苗生理特性的影响. 中国野生植物资源, 2021, 40(4):33-37.
[18] 祁伟亮, 冯鸿, 刘松青, 等. 不同桑品种在干旱胁迫下脯氨酸及可溶性蛋白质含量的变化规律研究. 中国野生植物资源, 2017, 36(5):34-36,39.
[19] 沙汉景. 水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻氮代谢及产质量的调控效应. 哈尔滨:东北农业大学, 2018.
[20] 张浩, 陆宁, 钱晓刚, 等. 不同类型土壤重金属胁迫对烟叶脯氨酸含量的影响. 贵州农业科学, 2014, 42(1):127-131.
[21] 王亮. 氯化镧和氯化铈对大豆产量和品质的影响. 哈尔滨:东北农业大学, 2015.
[22] 陈璐, 张小丽, 高柱, 等. 喷施硝酸镧对脐橙叶片渗透调节物质的影响. 中国农学通报, 2021, 37(29):114-119.
doi: 10.11924/j.issn.1000-6850.casb2021-0291
[23] 李建秋. 稀土元素镧和铈对小麦的毒性效应及分子机制研究. 上海: 上海交通大学, 2020.
[24] 熊斌, 程玉渊, 张学伟, 等. 稀土肥不同施用方式对烟草品质的影响. 土壤通报, 2019, 50(2):381-386.
[25] 周洁, 郭兰萍, 肖文娟, 等. 稀土元素的植物生理学效应及其在中药材中的应用. 中国中药杂志, 2012, 37(15):2238-2241.
[26] 孙彦坤, 于越, 任红玉, 等. 不同生育期喷施稀土镧和铈对大豆膜透性的Hormesis效应. 江苏农业科学, 2016, 44(3):88-90.
[1] Han Yuhuan, Liu Chen, Yang Long, Yu Tao. Effects of Topping Period and Number of Remained Leaves on Growth and Development of Upper Leaves of Flue-Cured Tobacco in Shandong Province [J]. Crops, 2023, 39(2): 157-162.
[2] Wang Yuehua, Zhou Junxue, Ma Yilin, Ma Junhong, Wang Yanfang, Zhao Shimin, Shen Hongtao, Li Youjun, Liu Ling. Effects of Different Harvest Maturity of Upper Six Leaves on Physiological Metabolism and Quality of Flue-Cured Tobacco Line LY1306 [J]. Crops, 2023, 39(2): 171-177.
[3] Zhang Yifei, Zu Qingxue, Nie Zhongyang, Lin Song, Rao Chen, Cheng Zhijun. Research on Contribution of Glutamic Acid to Nitrogen Nutrition and Physiological Characteristics of Flue-Cured Tobacco [J]. Crops, 2023, 39(2): 186-192.
[4] Wang Dequan, Liu Yang, Liu Jiang, Chen Keling, Wang Yi, Du Chuanyin, Du Yuhai, Ma Xinghua. Research Progress of Furrow and Ridge Rain-Harvesting Farming Technology and its Application Prospects in Flue-Cured Tobacco Production [J]. Crops, 2023, 39(1): 1-5.
[5] Chen Dong, Zou Jing, Guo Ganggang, Dai Wendian, Song Shaoguang, Huang Ying. Effects of Different Specifications of Seedling Trays on Quality and Main Physiological Characteristics of Tobacco Seedlings [J]. Crops, 2023, 39(1): 129-135.
[6] Zhang Lixia, Guo Xiaoyan, Shi Pengfei, Nie Liangpeng, Ling Jingwei, Shen Peilin, Ding Li, Zhang Lin, Lü Yuhu, Pan Ziliang. Effects of Drought Stress on Growth, Yield and Benefits of Kenaf in Vigorous Growing Period [J]. Crops, 2023, 39(1): 184-189.
[7] Zhang Yonggang, Ren Zhiguang, Xu Zhiqiang, Liu Jianguo, Zhang Xiaobing, Liu Huabing, Xia Chen, Cheng Changhe. Chemical Quality Evaluation of Flue-Cured Tobacco Based on Maximization of Deviation and BP Neural Network [J]. Crops, 2023, 39(1): 190-195.
[8] Li Diqin, Yao Shaoyun, Wang Qing, Yi Ke, Liu Yiyun, Tang Xiaoming, Peng Yuanyuan, Fu Changwu. Effects of Different Nitrogen Sources on the Growth and Development of Tobacco Seedlings [J]. Crops, 2023, 39(1): 201-206.
[9] Wang Yuan, Wang Jiming, Nian Fuzhao, Zheng Yuanxian, Xu Yinlian, Li Cuifen, Cui Yongquan, Zhang Qifu, Zhao Leifeng, Liao Xiaolin, He Yuansheng. Effects of Continuous Cropping with Rice Hull Biochar on Soil Physical and Chemical Properties and Growth of Flue-Cured Tobacco [J]. Crops, 2023, 39(1): 219-225.
[10] Chen Yan, Chen Qiang, He Yi, Yu Huiping, Gao Junyi, Zhao Erwei, Lu Yingang. Effects of Tobacco Planting Ecoregions, Varieties and Their Interactions on Polyphenol Content and Quality of Flue-Cured Tobacco [J]. Crops, 2022, 38(6): 132-138.
[11] Yin Xilong, Shi Yang, Li Wangsheng, Xing Wang. Photosynthetic Physiological Response to Drought Stress in Sugar Beet at Seedling Stage [J]. Crops, 2022, 38(6): 152-158.
[12] Zhang Mingfa, Zhang Sheng, Teng Kai, Chen Qianfeng, Tian Minghui, Jiang Zhimin, Chao Jin, Jian Panfeng, Deng Xiaohua. Effects of Fertilizing with Straw Biochar on Soil pH and Root Growth of Flue-Cured Tobacco in Huayuan, Hunan [J]. Crops, 2022, 38(6): 193-200.
[13] Zhang Ruidong, Liang Xiaohong, Liu Jing, Nan Huailin, Wang Songyu, Cao Xiong. Effects of Seed Priming on Germination and Physiological Characteristics of Sorghum Seeds under Drought Stress [J]. Crops, 2022, 38(6): 234-240.
[14] Li Wangsheng, Wang Xueqian, Yin Xilong, Shi Yang, Liu Dali, Tan Wenbo, Xing Wang. Comprehensive Evaluation of Drought Tolerance of Sugar Beet Germplasms at Seedling Stage [J]. Crops, 2022, 38(6): 54-60.
[15] Zhu Lin, Cao Xiang, Deng Xiaohua, Hu Risheng, Pei Xiaodong, Xiang Shipeng, Xiao Zhijun, Wang Weimin, Zhang Cheng, Jiang Zhimin. Characteristics of Water Loss and Pigment Degradation of Xiangyan No.7 Tobacco Leaves during Curing Process [J]. Crops, 2022, 38(5): 174-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!