Crops ›› 2023, Vol. 39 ›› Issue (3): 109-115.doi: 10.16035/j.issn.1001-7283.2023.03.015

Previous Articles     Next Articles

The Effects of Nitrogen Fertilizer Reduction and Transplanting Density on Yield and Eating Quality of Japonica Hybrid Rice Dianheyou 615

Zhang Guozhong1,2(), Li Juan1,2(), Li Yucai3, Jin Shoulin1,2, Hong Ruke1,2, Huang Dajun1,2, Pu Shihuang2,4, Shi Congbo3, Duan Zilin2,4, Ma Di1, Chen Lijuan1,2()   

  1. 1College of Agriculture and Biotechnology, Yunnan Agricultural University, Kunming 650100, Yunnan, China
    2Rice Research Institute, Yunnan Agricultural University, Kunming 650100, Yunnan, China
    3Qujing Sanbao Street Economic Management Service Center, Qujing 655002, Yunnan, China
    4Yunnan Jinding Hepu Agricultural Science and Technology Co., Ltd., Kunming 652100, Yunnan, China
  • Received:2022-01-12 Revised:2023-02-08 Online:2023-06-15 Published:2023-06-16

Abstract:

In order to explore the effects of nitrogen fertilizer reduction and transplanting density on rice yield and eating quality, ?Dianheyou 615?, a Dian-type japonica hybrid rice with high quality was taken as experimental material, and a two-factor split plot experiment was adopted with nitrogen fertilizer reduction (100%, 20%, 10%, 0%, A) as the main treatment and transplanting density (3.9×105, 4.2×105, 4.5×105 clumps/ha, B) as the secondary treatment. The effects of nitrogen fertilizer reduction, transplanting density and nitrogen density interaction on yield and eating quality were analyzed. The results showed that with the decrease of nitrogen fertilizer application rate, the yield decreased significantly, the eating value increased significantly, the amylose and protein contents did not change significantly, and the three characteristic values of RVA profile parameters, hot paste viscosity, setback viscosity and cold paste viscosity, changed significantly or extremely significantly; transplanting density had no significant effect on yield and eating quality. Nitrogen-density interaction had significant influence on taste value, RVA profile parameters breakdown viscosity, consistence viscosity and setback viscosity. Nitrogen reduction by 10% had no obvious change in rice yield and eating quality; combined with the interaction effect of nitrogen and density, the treatment combination of nitrogen reduction by 10% and transplanting density of 4.5×105 clumps/ha could achieve the goal of reducing nitrogen fertilizer application, stabilizing yield and ensuring quality, and achieve the requirements of green, high efficiency and balanced yield and quality.

Key words: Nitrogen fertilizer reduction, Transplanting density, Dianheyou 615, Yield, Eating quality

Table 1

Nitrogen fertilizer reduction and transplanting density on rice yield and its components"

处理
Treatment
产量
Yield (kg/hm2)
穗数
Panicles number (×104/hm2)
穗粒数
Spikelets per panicle
结实率
Seed-setting rate (%)
千粒重
1000-grain weight (g)
A1 6153±492c 345.67±59.78b 129±5c 91.16±1.93a 23.80±0.46a
A2 9523±605b 370.83±65.88ab 158±17b 77.39±6.71b 23.36±0.82ab
A3 10 191±1374ab 400.50±86.36ab 167±13ab 72.38±5.88b 23.56±0.74a
A4 10 906±607a 411.17±17.96a 175±8a 71.93±6.59b 22.86±0.64b
B1 9283±2040a 356.00±65.42b 162±19a 76.28±9.49a 23.33±0.64a
B2 9059±2089a 372.75±52.36ab 158±27a 78.19±11.08a 23.16±0.56a
B3 9239±2096a 417.38±66.00a 152±16a 80.18±8.30a 23.69±0.92a
A1B1 6129±234c 296.50±18.33d 133±1de 90.10±1.10a 23.77±0.65a
A1B2 6149±598c 344.50±31.69bcd 124±4e 91.63±2.55a 23.57±0.52ab
A1B3 6182±746c 396.00±74.35abc 130±5e 91.73±2.15a 24.06±0.01a
A2B1 9829±847ab 304.50±58.50d 169±4ab 76.03±5.46bc 23.42±0.18ab
A2B2 9592±495ab 403.00±33.45abc 149±27cd 78.23±10.09b 22.56±0.03b
A2B3 9150±383b 405.00±54.00abc 155±10bc 77.90±6.66b 24.11±0.91a
A3B1 10 572±1127ab 409.50±34.50abc 171±6ab 71.57±1.33bc 23.05±0.51ab
A3B2 9406±1875ab 319.50±44.42cd 178±2a 66.67±0.81c 23.55±0.50ab
A3B3 10 596±1173ab 472.50±94.50a 152±13bc 78.90±4.73b 24.07±0.95a
A4B1 10 602±606ab 413.50±6.93ab 176±12a 67.40±4.91c 23.09±1.02ab
A4B2 11 088±627a 424.00±14.72ab 180±6a 76.23±9.52bc 22.97±0.35ab
A4B3 11 026±709a 396.00±20.62abc 169±4ab 72.17±0.51bc 22.53±0.45b
A 23.85** 23.25** 47.51** 31.94** 6.10*
B 0.22ns 58.67** 2.90ns 1.50ns 1.96ns
A×B 1.31ns 1.92ns 1.87ns 1.46ns 1.61ns

Table 2

Effects of nitrogen fertilizer reduction and transplanting density on relevant indexes of rice eating quality"

处理
Treatment
蛋白质
Protein (%)
直链淀粉
Amylose (%)
食味值
Taste value
A1 7.74±0.09a 16.40±0.15b 73.56±0.53a
A2 7.87±0.10a 16.74±0.64ab 72.81±0.94ab
A3 7.87±0.12a 17.07±0.56a 72.41±0.72b
A4 7.83±0.25a 16.91±0.68ab 72.00±1.22b
B1 7.86±0.16a 16.75±0.45a 72.48±1.15a
B2 7.78±0.19a 16.83±0.64a 72.86±0.97a
B3 7.84±0.12a 16.77±0.69a 72.74±1.02a
A1B1 7.73±0.06ab 16.43±0.06a 73.37±0.60abc
A1B2 7.73±0.06ab 16.43±0.23a 73.43±0.51ab
A1B3 7.77±0.15ab 16.33±0.15a 73.87±0.51a
A2B1 7.83±0.06ab 16.83±0.71a 73.33±0.91abc
A2B2 7.90±0.10ab 16.83±0.49a 72.77±1.08abcd
A2B3 7.87±0.15ab 16.57±0.91a 72.33±0.91abcd
A3B1 7.90±0.17ab 17.07±0.45a 72.00±0.00bcd
A3B2 7.87±0.12ab 16.93±0.50a 72.23±0.68abcd
A3B3 7.83±0.12ab 17.20±0.87a 73.00±0.89abc
A4B1 7.97±0.23a 16.67±0.29a 71.23±1.08d
A4B2 7.63±0.31b 17.10±1.15a 73.00±1.48abc
A4B3 7.90±0.10ab 16.97±0.55a 71.77±0.40cd
A 1.41ns 2.13ns 4.76*
B 1.05ns 0.11ns 1.03ns
A×B 1.55ns 0.50ns 2.97*

Table 3

Effects of nitrogen fertilizer reduction and transplanting density on starch RVA profile parameters"

处理
Treatment
峰值黏度
PKV (cP)
热浆黏度
HPV (cP)
崩解值
BDV (cP)
最终黏度
CPV (cP)
回复值
CSV (cP)
峰值时间
PeT (min)
消减值
SBV (cP)
糊化温度
PaT (℃)
A1 2204±85a 1378±106a 826±115ab 2868±162a 1490±95a 6.3±0.1a 664±167a 71.1±6.1a
A2 2106±74bc 1350±99ab 756±130b 2779±114ab 1429±119a 6.3±0.1a 673±149a 71.2±6.1a
A3 2071±84c 1269±68bc 802±112b 2676±158bc 1407±124a 6.3±0.1a 603±162ab 70.9±6.2a
A4 2168±86ab 1230±52c 938±120a 2647±66c 1417±89a 6.2±0.1a 479±78b 68.7±0.7a
B1 2133±107a 1305±101a 828±130a 2707±133a 1402±97a 6.3±0.1a 574±98a 69.1±0.7a
B2 2131±105a 1308±77a 823±126a 2765±165a 1457±102a 6.3±0.1a 634±200a 72.0±7.2a
B3 2147±77a 1307±128a 840±152a 2755±167a 1448±125a 6.3±0.1a 606±167a 70.3±5.4a
A1B1 2231±88a 1407±138a 824±140abc 2857±127ab 1450±93abc 6.4±0.2ab 626±71abc 69.3±1.2a
A1B2 2230±104a 1333±82ab 897±47abc 2781±145abc 1448±71abc 6.3±0.0ab 551±101bc 69.0±0.0a
A1B3 2150±63ab 1395±121a 755±126bc 2967±204a 1572±83a 6.4±0.2ab 817±200a 75.1±10.6a
A2B1 2131±47ab 1271±92ab 860±139abc 2715±128bc 1444±96abc 6.3±0.1ab 584±168bc 68.9±0.8a
A2B2 2066±102ab 1372±27a 695±114c 2894±57ab 1522±54ab 6.4±0.0a 828±72a 75.7±10.1a
A2B3 2119±75ab 1407±122a 712±102c 2728±45bc 1320±115c 6.3±0.1ab 608±33abc 68.9±0.0a
A3B1 2059±131b 1280±66ab 778±177bc 2595±92c 1315±116c 6.3±0.1ab 537±70bc 69.0±0.8a
A3B2 2042±29b 1280±102ab 762±97bc 2774±251abc 1494±149abc 6.4±0.1ab 732±244ab 75.0±10.8a
A3B3 2113±78ab 1247±54ab 866±25abc 2659±56bc 1411±43abc 6.3±0.1ab 540±54bc 68.8±0.2a
A4B1 2112±110ab 1262±56ab 850±132abc 2662±31bc 1400±55abc 6.3±0.1ab 550±84bc 69.3±0.5a
A4B2 2185±42ab 1248±33ab 937±71ab 2611±41c 1363±69bc 6.2±0.0b 426±2c 68.5±0.9a
A4B3 2207±92ab 1179±25b 1028±106a 2667±108bc 1488±107abc 6.2±0.0b 460±69c 68.5±0.5a
A 3.51ns 8.21* 2.87ns 12.27** 1.67ns 1.34ns 8.73* 0.42ns
B 0.09ns 0.003ns 0.06ns 0.47ns 1.75ns 0.07ns 0.49ns 1.94ns
A×B 1.40ns 1.643ns 3.43* 1.86ns 3.72* 1.56ns 3.49* 0.98ns
[1] 虞国平. 水稻在我国粮食安全中的战略地位分析. 北京: 中国农业科学院, 2009.
[2] 杨万江, 刘琦. “粮安天下”:中国大米供求变化预测. 农业现代化研究, 2019, 40(1):44-53.
[3] 谢小兵, 周雪峰, 蒋鹏, 等. 低氮密植栽培对超级稻产量和氮素利用率的影响. 作物学报, 2015, 41(10):1591-1602.
doi: 10.3724/SP.J.1006.2015.01591
[4] 陈温福, 徐正进, 张龙步. 水稻超高产育种生理基础. 沈阳: 辽宁科学技术出版社, 1995.
[5] 于晓慧, 王广元, 李广信, 等. 不同施氮量和栽插密度对晋稻8号产量及品质的影响. 中国稻米, 2011, 17(4):45-47.
[6] 陈云, 张亚军, 张宏路, 等. 机插株距对优质食味水稻品种产量和群体质量的影响. 中国水稻科学, 2020, 34(6):550-560.
doi: 10.16819/j.1001-7216.2020.0205
[7] 唐健, 唐闯, 郭保卫, 等. 氮肥施用量对机插优质晚稻产量和稻米品质的影响. 作物学报, 2020, 46(1):117-130.
[8] 张桂莲, 赵瑞, 刘逸童, 等. 施氮量对优质稻产量和稻米品质及氮素利用效率的影响. 湖南农业大学学报(自然科学版), 2019, 45(3):231-236.
[9] 汪军, 王德建, 张刚. 太湖地区稻麦轮作体系下秸秆还田配施氮肥对水稻产量及经济效益的影响. 中国生态农业学报, 2011, 19(2):265-270.
[10] Cui Z, Zhang H, Chen X, et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555(7696):363-366.
doi: 10.1038/nature25785
[11] 吴子帅, 李虎, 黄秋要, 等. 施氮量和栽插密度对桂育11号产量和稻米品质的影响. 中国农业科技导报, 2021, 23(8):154-162.
[12] 荆爱霞. 移栽行距、密度对水稻超高产形成的影响. 扬州:扬州大学, 2008.
[13] 兰宇辰, 郭晓红, 李猛, 等. 施氮量与移栽密度互作对垦粳7号稻米品质的影响. 中国农业科技导报, 2021, 23(1):136-145.
doi: 10.13304/j.nykjdb.2019.0673
[14] 李虎, 陈传华, 刘广林, 等. 种植密度和施氮量对桂育9号农艺性状及产量的影响. 作物杂志, 2019(6):99-103.
[15] 国家市场监督管理局, 中国国家标准化管理委员会. GB/T 1354-2018. 北京: 中国标准出版社, 2018.
[16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 24852-2010 大米及米粉糊化特性测定快速粘度仪法. 北京: 中国标准出版社, 2010.
[17] 袁帅, 苏雨婷, 陈平平, 等. 施氮对稻米品质的影响研究进展与展望. 作物研究, 2021, 35(4):394-400.
[18] 舒庆尧, 吴殿星, 夏英武, 等. 稻米淀粉RVA谱特征与食用品质的关系. 中国农业科学, 1998, 31(3):25-26,28-29.
[19] 单彩云, 魏玉光. 水稻施肥量与成熟度和产量的关系. 北方水稻, 2019, 49(1):33-35.
[20] 李红宇, 周雪松, 杨锡铜, 等. 减氮施肥对寒地水稻产量品质及抗倒性的影响. 黑龙江八一农垦大学学报, 2019, 31(5):1-8.
[21] 张耗, 杜永, 杨建昌. 水稻超高产栽培的途径与技术. 中国农学通报, 2007(8):136-140.
[22] 林玉棋. Ⅱ优航2号作双季晚稻栽培的适宜氮肥用量和移栽密度探讨. 杂交水稻, 2008, 23(3):42-45.
[23] 马国辉, 龙继锐, 戴清明, 等. 超级杂交中稻Y两优1号最佳缓释氮肥用量与密度配置研究. 杂交水稻, 2008, 23(6):73-77.
[24] 陈海飞, 冯洋, 蔡红梅, 等. 氮肥与移栽密度互作对低产田水稻群体结构及产量的影响. 植物营养与肥料学报, 2014, 20(6):1319-1328.
[25] 侯国强. 不同肥密水平对东北粳稻群体生长及产量的影响. 黑龙江农业科学, 2014(1):26-30.
[26] 田智慧, 潘晓华. 氮肥运筹及密度对超高产水稻中优752的产量及产量构成因素的影响. 江西农业大学学报, 2007(6):894-898.
[27] 樊红柱, 曾祥忠, 张冀, 等. 移栽密度与供氮水平对水稻产量、氮素利用影响. 西南农业学报, 2010, 23(4):1137-1141.
[28] 代贵金, 于广星, 刘宪平, 等. 氮肥用量和栽插密度对杂交粳稻辽优5206生长与产量性状的影响. 中国稻米, 2021, 27(3):89-92,97.
doi: 10.3969/j.issn.1006-8082.2021.03.018
[29] 季红娟, 董长生, 赵步洪, 等. 播期和栽插密度对水稻扬粳805产量与品质的影响. 扬州大学学报(农业与生命科学版), 2018, 39(2):10-15.
[30] 赵国珍, 陈于敏, 苏振喜, 等. 施氮量和栽插密度对云粳30号淀粉RVA谱特性影响. 中国稻米, 2013, 19(5):33-35.
[31] 胡培松, 翟虎渠, 唐绍清, 等. 利用RVA快速鉴定稻米蒸煮及食味品质的研究. 作物学报, 2004, 30(6):519-524.
[32] 高群山, 汤小兰, 周兴山, 等. 不同氮肥用量水平对水稻生长及产量影响. 北方水稻, 2015, 45(6):32-34,38.
[33] 李录久, 王家嘉, 李东平, 等. 减量施氮对水稻生长和肥料利用效率的影响. 安徽农业科学, 2013, 41(1):99-100,103.
[34] 张军, 周冬冬, 许轲, 等. 淮北地区麦茬机插优质食味粳稻氮肥减量的精确运筹. 作物学报, 2022, 48(2):410-422.
doi: 10.3724/SP.J.1006.2022.02093
[1] Yuan Shuai, Chen Jiwang, Chen Pingping, Yi Zhenxie. Response of Yield and Cd Accumulation and Distribution in Main Crop and Ratooning Rice of Xiangzaoxian 45 to Irrigation Methods [J]. Crops, 2023, 39(3): 101-108.
[2] Ma Yihu, He Xianbiao, Chen Jian, Tang Xuejun, Wang Xuhui, He Haohao, Jin Yuqing, Qi Wen, Jiang Hailing, Zhou Cui. Effects of Seedling Ages on Grain Yield and Quality of High Quality Rice in Southeastern Zhejiang Province [J]. Crops, 2023, 39(3): 116-125.
[3] Zhao Yun, Feng Guojun, Hu Xiangwei, Wumaierjiang·Kuerban , Li Pengbing, Li Cuimei, Akebota·Muheyati . Preliminary Report on Selection of Herbicide-Resistant Foxtail Millet Varieties Suitable for Planting in Kashgar, Xinjiang [J]. Crops, 2023, 39(3): 126-133.
[4] Xing Pipeng, Huang Yanfeng, Yi Siyuan, Lan Rujian, Pan Shenggang, Mo Zhaowen, Tian Hua, Duan Meiyang, Tang Xiangru. Effects of Foliar Ornithine Spraying at Heading Stage on Yield, Quality and 2-Acetyl-1-Pyrroline Biosynthesis of Fragrant Rice [J]. Crops, 2023, 39(3): 134-138.
[5] Li Junzhi, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai. Effects of Nitrogen Application Levels on Yield and Quality of Different Strong Gluten Wheat Varieties [J]. Crops, 2023, 39(3): 148-153.
[6] Song Chunyan, Wan Yunfan, Li Yu’e, Cai Andong, Hu Yanyan, Zhou Hui, Zhu Bo, Wang Bin. Relationships between Tiller Dynamic, Earbearing Tiller Rate and Yield of Double Cropping Rice under Elevated Temperature and CO2 Concentration [J]. Crops, 2023, 39(3): 159-166.
[7] Xu Qian, Zeng Xinyu, Xiao Bo, Li Baozheng, Zhang Xingduan. Effects of Foliar Fertilizer on Yield and Quality of Shoot Tip in Leaf-Vegetable Sweet Potato [J]. Crops, 2023, 39(3): 183-187.
[8] Guo Shulei, Wang Ying, Wei Liangming, Zhang Xin, Liu Yan, Wu Weihua, Lu Daowen, Lei Xiaobing, Wang Zhenhua, Lu Xiaomin. Analysis of Influencing Factors of Maize Yield under Different Ecological Conditions [J]. Crops, 2023, 39(3): 205-214.
[9] Luo Siwei, Shi Xiunan, Jia Yonghong, Zhang Jinshan, Wang Kai, Li Dandan, Wang Runqi, Dong Yanxue, Shi Shubing. Effects of Drip Irrigation Capillary Spacing and Drop Spacing on Photosynthesis, Dry matter Accumulation, and Yield Formation of Uniformly Sown Winter Wheat [J]. Crops, 2023, 39(3): 230-237.
[10] Shao Yang, Guo Yanping, Min Gengmei, Yang Xiaoming. Effects of Different Functional Herbicides on the Growth of Broad Bean and Field Weeds [J]. Crops, 2023, 39(3): 254-259.
[11] Zhang Haibin, Wu Xiaohua, Yu Meiling, Wang Xiaobing, Ye Jun, Cui Siyu, Li Yuanqing, Wang Zhanxian, Zhang Hongxu, Xue Wei, Li Yan, Cui Guohui, Zhao Xuanwei, Liu Juan. AMMI Model Analysis of Grain Yield of Wheat Varieties (Lines) in Inner Mongolia Regional Trials [J]. Crops, 2023, 39(3): 27-34.
[12] Li Jing, Li Pengcheng, He Yongbin, Xing Yaling, Meng Fanhua, Zhou Qian, Nan Ming. Multivariate Analysis and Comprehensive Evaluation of Main Characteristics of 16 Russian Winter Wheat Varieties [J]. Crops, 2023, 39(3): 58-65.
[13] Gao Zhenxian, Cao Qiao, Shan Zilong, Fu Xiaoyi, Han Ran, He Mingqi, Shi Zhanliang, Zheng Shusong. Preliminary Study on the Influence of Late Spring Coldness on 323 Winter Wheat Germplasm Resources [J]. Crops, 2023, 39(3): 86-93.
[14] Wei Yunfei, Li Meng, Ji Xin, Liu Juan, Wang Fujuan, Liu Qiuyuan. Effects of Different Tillage and Sowing Methods on the Growth and Yield of Direct-Seeding Rice under Full Returning of Straw [J]. Crops, 2023, 39(3): 94-100.
[15] Wang Rongsheng, Mu Fengchen, Li Kun, Zhang Wei, Liu Hui, Ding Guohua, Yang Guang, Wang Nanbo, Zhang Guomin, Liu Yuming, Tao Yongqing. Comprehensive Analysis of Milling Quality and Eating Quality of Japonica Rice in Cold Region [J]. Crops, 2023, 39(2): 115-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!