Crops ›› 2024, Vol. 40 ›› Issue (1): 148-156.doi: 10.16035/j.issn.1001-7283.2024.01.020

Previous Articles     Next Articles

Effects of Interaction between Organic Fertilizer and Fenlong on Photosynthetic Physiological Characteristics and Tissue and Cell Structure of Sugarcane

Yang Lipei1(), Han Shijian1, Wei Benhui2, Li Zhigang1, Li Ruiling1, Zhu Shuifang1, Xiao Jiming1, Li Suli1()   

  1. 1College of Agriculture, Guangxi University / Key Laboratory of Sugarcane Biology in Guangxi / Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, Guangxi, China
    2Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
  • Received:2022-11-07 Revised:2023-01-02 Online:2024-02-15 Published:2024-02-20
  • Contact: Li Suli E-mail:14777230115@163.com;lisuli88@163.com

Abstract:

By exploring the response of the photosynthetic physiological characteristics of sugarcane under the interaction mode of organic fertilizer and fenlong tillage, the ?Guitang 42? was used as the tested sugarcane variety, through a two-year field experiment, the wormcast+compound fertilizer (F1), pig manure+compound fertilizer (F2), and compound fertilizer (CK) were carried out to investigate on the photosynthetic physiological characteristics and tissue cell structure of sugarcane. The results showed that, the stomatal conductance, intercellular CO2 concentration and transpiration rate of leaves treated with organic fertilizer were higher than those with CK. Especially in the elongation period of perennial sugarcane, the activities of malic dehydrogenase, phosphoenolpyruvate carboxylase and ribose 1,5-diphosphate carboxylase in leaves were significantly higher than those of CK. The leaf thickness, mesophyll cell size and vascular bundle area of the organic fertilizer treatment were greater than those of CK. The plant emergence rate and tillering rate of perennial sugarcane of F2 treatment were significantly higher than those of CK. The yield of organic fertilizer treatment was significantly higher than that of CK. To sum up, the interaction model of organic fertilizer and fenlong tillage is beneficial to increase the photosynthetic enzyme activities, stomatal conductance and other related indicators. Additionally, it can improve the sugarcane?s mesophyll cell and vascular tissue structure, which would ultimately improve the yield by facilitating the accumulation and functioning of dry matter.

Key words: Sugarcane, Fenlong, Organic fertilizer, Photosynthetic physiology

Table 1

Fertilization methods of different treatments kg/hm2"

处理
Treatment
基肥Base fertilizer 攻茎肥Stalk tapping fertilizer
复合肥
Compound fertilizer
蚯蚓粪
Wormcast
猪粪
Pig manure
复合肥
Compound fertilizer
尿素
Urea
氯化钾
Potassium chloride
CK 1 200 0 0 1 500 675 675
F1 1 200 3 000 0 1 500 675 675
F2 1 200 0 3 000 1 500 675 675

Table 2

The agronomic characters of sugarcane under different fertilization treatments"

作物季
Crop season
处理
Treatment
出苗率
Emergence
rate (%)
发株率
Plant emergence
rate (%)
分蘖率
Tillering
rate (%)
新植蔗
Newly planted
cane
CK 44.37±5.10a 86.25±2.27a
F1 46.67±2.12a 80.87±5.46a
F2 43.33±1.92a 88.50±7.45a
宿根蔗
Perennial cane
CK 58.73±3.92b 61.05±1.49b
F1 64.05±0.50a 60.84±2.61b
F2 67.86±2.36a 72.30±2.25a

Fig.1

Mature sugarcane under different fertilization treatments a: Fenlong tillage+organic fertilizer, A represents F1 treatment; b: Fenlong tillage+organic fertilizer, B represents F2 treatment; c: Fenlong tillage represents CK."

Fig.2

SPAD value of sugarcane leaves under different fertilization treatments The same lowercase letters indicate no significant difference (P≥0.05), the same below."

Fig.3

Photosynthetic parameters of sugarcane under different fertilization treatments Different lowercase letters indicate significant difference (P < 0.05), the same below."

Fig.4

Photosynthetic related enzyme activities in sugarcane under different fertilization treatments"

Table 3

Leaves histocyte of sugarcane under different treatments"

作物季
Crop
season
处理
Treatment
叶片厚度
Leaf
thickness
(μm)
叶肉细胞大小
(横径)
Mesophyll cell (MC)
size (transverse
diameter) (μm)
维管束面积
Vascular bundle (VB) area
(μm2)
新植蔗
Newly
planted cane
CK 243±4a 32±2b 7880±930b
F1 245±5a 33±2b 7959±763b
F2 245±7a 39±2a 9545±976a
宿根蔗
Perennial
cane
CK 223±4b 29±2c 6380±330c
F1 261±3a 34±2b 7249±263b
F2 255±5a 41±2a 8545±576a

Fig.5

Cell structure of sugarcane leaf tissue under different treatments MC refers to mesophyll cells and VB refers to vascular bundles."

Table 4

Yield and quality of sugarcane under different fertilization treatments"

作物季
Crop season
处理
Treatment
产量
Yield
(t/hm2)
糖分
Sugar
content (%)
新植蔗Newly planted cane CK 130.56±1.18b 13.50±0.19a
F1 167.22±2.04a 13.69±0.10a
F2 173.39±3.26a 13.99±0.23a
宿根蔗Perennial cane CK 132.07±1.52b 15.78±0.14a
F1 143.22±1.61a 15.72±0.31a
F2 140.69±2.31a 13.99±0.23a

Table 5

"

项目
Item
CK F1 F2
次数
Number
of times
金额
Amount of
money
次数
Number
of times
金额
Amount of
money
次数
Number
of times
金额
Amount of
money
地租Land rent 2 21 000.00 2 21 000.00 2 21 000.00
整地和开行Soil preparation and ditching 1 1950.00 1 1950.00 1 1950.00
蔗种Seed of cane 1 5250.00 1 5250.00 1 5250.00
人工种植Artificial planting 1 2250.00 1 2250.00 1 2250.00
人工施有机肥Applying organic fertilizer by labor 0 0.00 2 300.00 2 300.00
化肥Chemical fertilizer 2 38 610.00 2 38 610.00 2 38 610.00
有机肥Organic fertilizer 0 0.00 2 13 200.00 2 15 000.00
封闭除草Pre-emergence 2 450.00 2 450.00 2 450.00
中耕培土Cultivator and earthing-up 2 1500.00 2 1500.00 2 1500.00
松蔸Pine stump 1 1500.00 1 1500.00 1 1500.00
杀虫Insect disinfestation 4 600.00 4 600.00 4 600.00
化学除草Chemical weeding 4 1200.00 4 1200.00 4 1200.00
机收Harvest with machine 2 24 949.85 2 29 491.80 2 29 837.60
总产量Total output 2 262.63 2 310.44 2 314.08
总成本Total cost 99 259.85 117 301.80 119 447.60
总产值Total output value 136 567.60 161 428.80 163 321.60
总利润Total profit 37 307.75 44 127.00 43 874.00

Table 6

Correlation between photosynthetic-related physiological traits and agronomic traits of sugarcane at seedling stage under different fertilization treatments"

项目
Item
产量
Cane
yield
糖分
Sugar
content
出苗率
Emergence
rate
发株率
Plant
emergence
rate
叶片
厚度
Leaf
thickness
叶肉细胞大
小(横径)
MC size
(transverse
diameter)
维管束
面积
VB area
NADP-
MDH
PEPC RuBPC SPAD Pn Gs Ci Tr
产量Cane yield 1.000
糖分Sugar content -0.335 1.000
出苗率Emergence rate -0.445 0.592** 1.000
发株率
Plant emergence rate
0.517* -0.807** -0.719** 1.000
叶片厚度Leaf thickness 0.221 -0.111 0.347 0.122 1.000
叶肉细胞大小(横径)
MC size (transverse
diameter)
0.323 -0.242 0.294 0.332 0.639** 1.000
维管束面积VB area 0.803** -0.616** -0.251 0.644** 0.620** 0.674** 1.000
NADP-MDH 0.803** -0.616** -0.251 0.644** 0.620** 0.674** 1.000** 1.000
PEPC 0.903** -0.477* -0.258 0.547* 0.534* 0.625** 0.968** 0.968** 1.000
RuBPC 0.841** -0.502* -0.792** 0.738** -0.010 -0.008 0.617** 0.617** 0.658** 1.000
SPAD -0.275 0.699** 0.918** -0.754** 0.404 0.143 -0.207 -0.207 -0.174 -0.626** 1.000
Pn -0.547* 0.660** 0.979** -0.750** 0.310 0.210 -0.364 -0.364 -0.377 -0.835** 0.914** 1.000
Gs -0.506* 0.634** 0.957** -0.773** 0.130 0.222 -0.386 -0.386 -0.366 -0.861** 0.857** 0.945** 1.000
Ci 0.818** -0.582* -0.784** 0.854** -0.053 0.191 0.651** 0.651** 0.680** 0.943** -0.709** -0.838** -0.809** 1.000
Tr -0.525* 0.691** 0.960** -0.752** 0.176 0.260 -0.400 -0.400 -0.380 -0.855** 0.850** 0.964** 0.982** -0.798** 1.000

Table 7

Correlation between photosynthetic-related physiological traits and agronomic traits of sugarcane in the extension period under different fertilization treatments"

项目
Item
产量
Cane
yield
糖分
Sugar
content
出苗率
Emergence
rate
发株率
Plant
emergence
rate
叶片
厚度
Leaf
thickness
叶肉细胞大
小(横径)
MC size
(transverse
diameter)
维管束
面积
VB area
NADP-
MDH
PEPC RuBPC SPAD Pn Gs Ci Tr
产量Cane yield 1.000
糖分Sugar content -0.335 1.000
出苗率Emergence rate -0.445 0.592** 1.000
发株率
Plant emergence rate
0.517* -0.807** -0.719** 1.000
叶片厚度Leaf thickness 0.221 -0.111 0.347 0.122 1.000
叶肉细胞大小(横径)
MC size (transverse
diameter)
0.323 -0.242 0.294 0.332 0.639** 1.000
维管束面积VB area 0.571* -0.489* -0.187 0.748** 0.495* 0.832** 1.000
NADP-MDH 0.928** -0.499* -0.312 0.619** 0.450 0.603** 0.771** 1.000
PEPC 0.946** -0.606** -0.587* 0.698** 0.253 0.303 0.611** 0.931** 1.000
RuBPC -0.076 0.112 0.816** -0.299 0.639** 0.691** 0.251 0.183 -0.132 1.000
SPAD 0.178 -0.658** -0.296 0.755** 0.573* 0.574* 0.747** 0.440 0.385 0.092 1.000
Pn -0.565* 0.324 0.809** -0.462 0.354 0.088 -0.212 -0.399 -0.565* 0.653** -0.089 1.000
Gs 0.837** -0.723** -0.585* 0.817** 0.117 0.361 0.691** 0.881** 0.928** -0.110 0.443 -0.481* 1.000
Ci 0.826** -0.079 -0.168 0.357 0.609** 0.482* 0.609** 0.827** 0.744** 0.125 0.368 -0.325 0.552* 1.000
Tr 0.876** -0.667** -0.706** 0.810** 0.042 0.213 0.611** 0.847** 0.955** -0.292 0.388 -0.603** 0.971** 0.592** 1.000

Table 8

Correlation between photosynthetic-related physiological traits and agronomic traits of sugarcane at maturity under different fertilization treatments"

项目
Item
产量
Cane
yield
糖分
Sugar
content
出苗率
Emergence
rate
发株率
Plant
emergence
rate
叶片
厚度
Leaf
thickness
叶肉细胞大
小(横径)
MC size
(transverse
diameter)
维管束
面积
VB area
NADP-
MDH
PEPC RuBPC SPAD Pn Gs Ci Tr
产量Cane yield 1.000
糖分Sugar content -0.335 1.000
出苗率Emergence rate -0.445 0.592** 1.000
发株率
Plant emergence rate
0.517* -0.807** -0.719** 1.000
叶片厚度Leaf thickness 0.221 -0.111 0.347 0.122 1.000
叶肉细胞大小(横径)
MC size (transverse
diameter)
0.323 -0.242 0.294 0.332 0.639** 1.000
维管束面积VB area 0.803** -0.616** -0.251 0.644** 0.620** 0.674** 1.000
NADP-MDH 0.930** -0.535* -0.479* 0.725** 0.324 0.530* 0.904** 1.000
PEPC 0.431 0.015 0.439 -0.087 0.863** 0.655** 0.667** 0.414 1.000
RuBPC 0.421 -0.023 0.435 0.099 0.664** 0.934** 0.654** 0.510* 0.813** 1.000
SPAD -0.510* 0.769** 0.943** -0.844** 0.132 0.117 -0.458 -0.611** 0.274 0.292 1.000
Pn 0.328 -0.739** -0.734** 0.805** 0.081 -0.141 0.419 0.446 -0.211 -0.333 -0.863** 1.000
Gs 0.902** -0.016 -0.108 0.179 0.219 0.269 0.643** 0.733** 0.527* 0.477* -0.144 0.056 1.000
Ci 0.854** -0.139 0.002 0.303 0.476* 0.625** 0.816** 0.819** 0.701** 0.743** -0.110 0.040 0.893** 1.000
Tr 0.817** -0.495* -0.168 0.479* 0.671** 0.563* 0.966** 0.841** 0.766** 0.620** -0.368 0.357 0.720** 0.835** 1.000
[1] 陈光燕, 司伟, 蓝红星. 中国糖料生产布局变动及其影响因素分析. 中国农业资源与区划, 2021, 42(3):158-166.
[2] 林海荣. 我国甘蔗生产施肥现状及提高肥料利用率的对策. 南方农业, 2017, 11(12):117-118.
[3] 韦本辉. 旱地作物粉垄栽培技术研究简报. 中国农业科学, 2010, 43(20):4330.
[4] 韦本辉. 中国发明第四套农耕方法“粉垄”. 农业科学与技术, 2017, 18(11):2045-2048,2052.
[5] 韦本辉, 申章佑, 周佳, 等. 论粉垄“大科学”在人与自然共生中的作用与潜能. 农业科学与技术, 2017, 18(12):2303-2308,2311.
[6] 聂胜委, 张玉亭, 张巧萍, 等. 粉垄耕作对小麦玉米产量及耕层土壤养分的影响. 土壤通报, 2017, 48(4):930-936.
[7] 韦本辉. 粉垄活化资源构建绿色农业“3+1”产业体系的探讨. 农业科学与技术, 2017, 18(2):380-384.
[8] 申章佑, 李艳英, 周佳, 等. 粉垄耕作下减施肥料对木薯产量品质的影响初探. 中国土壤与肥料, 2022(2):99-105.
[9] 王乾, 杨术明, 杨树川, 等. 宁夏固原地区马铃薯种植粉垄耕作试验研究. 农业科学研究, 2021, 42(1):88-92.
[10] 蒋发辉, 高磊, 韦本辉, 等. 粉垄耕作对红壤理化性质及红薯产量的影响. 土壤, 2020, 52(3):588-596.
[11] 林阿典, 黄振瑞, 敖俊华, 等. 施钾和有机肥对甘蔗生长及土壤理化性状的影响. 甘蔗糖业, 2017(2):20-24.
[12] 农定产, 许树宁, 梁高明, 等. 甘蔗施用蚯蚓生物有机肥效果试验. 广西蔗糖, 2008(2):21-23.
[13] 张宇鹏, 陈桂芬, 沈方科, 等. 生态养猪垫料对新植蔗产量及品质的影响. 南方农业学报, 2013, 44(11):1846-1850.
[14] 周灵芝, 韦本辉, 甘秀芹, 等. 粉垄栽培对甘蔗生长和产量的影响. 安徽农业科学, 2017, 45(9):29-31.
[15] 韦本辉, 甘秀芹, 申章佑, 等. 粉垄栽培甘蔗试验增产效果. 中国农业科学, 2011, 44(21):4544-4550.
doi: 10.3864/j.issn.0578-1752.2011.21.024
[16] 韦增林, 张亮曼, 卢国培, 等. 粉垄栽培对甘蔗产量及糖分影响初报. 甘蔗糖业, 2018(6):37-40.
[17] 韦本辉, 甘秀芹, 刘斌, 等. 粉垄具“耕地水库”可破广西甘蔗单产偏低困局. 广西农学报, 2012, 27(3):48-50.
[18] 韦本辉, 申章佑, 甘秀芹, 等. 粉垄栽培对旱地作物产量品质的影响. 中国农业科技导报, 2012, 14(4):101-105.
[19] 王奇, 陈培赛, 周佳, 等. 粉垄耕作对甘蔗农艺性状及产量的影响. 江苏农业科学, 2019, 47(4):65-68.
[20] 韦本辉. 粉垄增产提质保水及倍用“天地资源”绿色发展的可能性. 农业科学与技术, 2017, 18(9):1631-1637.
[21] 黎佐生, 蒋代华, 韦本辉. 粉垄耕作对宿根蔗地根际微生物及酶活性的影响. 新农业, 2020(7):45-47.
[22] 谭芳, 杨荣仲, 李松, 等. 几种甘蔗蔗糖分分析方法比较. 西南农业学报, 2010, 23(2):502-507.
[23] 叶尚红. 植物生理生化实验教程. 第2版. 昆明: 云南科技出版社, 2007:212.
[24] 张书敏, 杨尚君, 刘红云, 等. 微波快速石蜡切片法观察谷子幼嫩叶片组织技术的优化. 基因组学与应用生物学, 2015, 34(3):669-673.
[25] 齐晓重. 连作杨树人工林光合作用的日变化过程及生理生化机制. 泰安:山东农业大学, 2014.
[26] 姜传英, 朱国栋, 姚志红, 等. 3个棘孢木霉菌株对山新杨组培移栽苗生长和光合特性的影响. 草业科学, 2016, 33(6):1189-1199.
[27] 杨鲤糠. 氮肥运筹对滴灌春小麦根系和群体结构的调控效应研究. 石河子:石河子大学, 2020.
[28] 李敏杰. 耕作方式与有机肥对土壤水碳氮变化及利用的影响. 郑州大学, 2021.
[29] 李素丽, 黄金玲, 韦本辉, 等. 粉垄耕作对甘蔗光合生理特性及产量品质的影响. 热带作物学报, 2021, 42(3):726-731.
[30] 杨梦秋. 油茶林光合特性及其养分动态的研究. 合肥:安徽农业大学, 2011.
[31] 严建民, 朱献玳, 王公金, 等. 湿害对小麦叶片光合酶RuBPC活性的效应. 江苏农业学报, 1993, 9(2):17-21.
[32] 许娜, 许家来, 朱先志, 等. 饼肥与化肥配施对烤烟叶片组织结构及有机酸含量的影响. 中国烟草科学, 2016, 37(1):20-25.
[33] 贺国强. 栽培措施对烤烟叶片结构和生理特性的影响. 哈尔滨:东北林业大学, 2008.
[34] 李浩, 韦本辉, 黄金玲, 等. 粉垄对甘蔗根系结构发育及呼吸代谢相关酶活性的影响. 中国农业科学, 2021, 54(3):522-532.
doi: 10.3864/j.issn.0578-1752.2021.03.006
[35] 李浩, 黄金玲, 李志刚, 等. 粉垄耕作提高土壤养分有效性并促进甘蔗维管组织发育和养分吸收. 植物营养与肥料学报, 2021, 27(2):204-214.
[36] 秦茜. 七个甘蔗品种叶片解剖结构特征与光合能力和耐旱性的关联. 南宁:广西大学, 2017.
[37] 李梦阳, 彭冠云, 邓彪, 等. 水稻维管束的研究进展. 植物生理学报, 2017, 53(9):1586-1590.
[38] 潘春香, 肖艳辉, 何金明, 等. 施氮水平对枇杷幼苗生长及根初生维管组织的影响. 广东农业科学, 2011, 38(13):6-8.
[39] 朱天琦, 刘晓静, 张晓玲. 氮营养调控对紫花苜蓿根系形态及其解剖结构的影响. 草地学报, 2016, 24(6):1290-1295.
doi: 10.11733/j.issn.1007-0435.2016.06.020
[40] 徐玉柱. 有机无机肥配施对玉米产量和生物性状的影响. 特种经济动植物, 2022, 25(9):34-35.
[41] 陈永, 兰靖, 罗荣森, 等. 生物有机肥对比复合肥在甘蔗生产上的应用. 广东农业科学, 2014, 41(4):88-92.
[42] 唐茂艳, 王强, 陈雷, 等. 水稻粉垄耕作生长及生理特性研究. 湖北农业科学, 2015, 54(16):3854-3856.
[43] 韦茂贵, 罗兴录, 黄秋凤. 生物有机肥对木薯产量及土壤理化性状的影响. 中国农学通报, 2011, 27(9):242-248.
[44] 杨雷, 冯作山, 王开昌, 等. 生物有机肥对土壤性质及水稻产量的影响. 现代农业科技, 2019(8):1-2,4.
[45] 王嘉男, 谢军红, 李玲玲, 等. 有机肥替代化肥对陇中旱农区玉米光合特性及产量的影响. 甘肃农业大学学报, 2020, 55 (4):29-36,42.
[46] Zhai L Y, Yan A, Shao K T, et al. Large Vascular Bundle Phloem Area 4 enhances grain yield and quality in rice via source-sink- flow. Plant Physiology, 2023, 191(1):317-334.
doi: 10.1093/plphys/kiac461
[47] 周灵芝, 韦本辉, 甘秀芹, 等. 粉垄栽培对甘蔗生长和产量的影响. 安徽农业科学, 2017, 45(9):29-31.
[1] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Wang Yanjie, Zhao Guangcai. Effects of Nitrogen Dressing Time and Proportion on Wheat Grain Filling and Its Physiological Mechanism [J]. Crops, 2024, 40(1): 174-179.
[2] Zhou Huiwen, Yan Haifeng, Qiu Lihang, Fan Yegeng, Zhou Zhongfeng, Luo Ting, Deng Yuchi, Zhang Xiaoqiu, Liang Yongjian, Chen Rongfa, Wu Jianming. Study on Effects of Operation Parameters on Deposition Distribution of UAV Droplets of Sugarcane during Elongating Stage [J]. Crops, 2023, 39(6): 121-126.
[3] Ma Tao, Xing Baolong, Zheng Minna. Effects of Different Fertilization Methods on Soil Bacterial Community Diversity in Soybean Rhizosphere [J]. Crops, 2023, 39(6): 167-173.
[4] Zhao Lijie, Zhao Haiyan, Han Genlan, Wang Jiang, Nie Mengʼen, Du Huiling, Yuan Xiangyang, Dong Shuqi. Effects of Nitrogen Fertilizer Combined with Organic Fertilizer on Quality of Millet [J]. Crops, 2023, 39(6): 224-232.
[5] Wang Zhenlong, Su Cuicui, Zhou Qi, Deng Chaochao, Zhou Yanfang. The Effects of Reducing Nitrogen Fertilizer and Applying Organic Fertilizer on the Yield, Quality, and Soil Quality of Helianthus tuberosus L. [J]. Crops, 2023, 39(5): 104-109.
[6] Zhai Jing, Yang Shengming, Wang Yuzhen, Shi Linlin. Effects of Multi-Year Organic Fertilizer Application on Starch Physicochemical Properties of Mid-Mature Soft Japonica Rice [J]. Crops, 2023, 39(5): 91-97.
[7] Hu Xinyuan, Liu Yongqiang, Xie Kuizhong, Sun Xiaohua, Luo Aihua. Effects of Organic Fertilizer Replacing Nitrogen Fertilizer on Soil Physical Chemistry Properties and Potato Quality under Continuous Cropping in Arid Area [J]. Crops, 2023, 39(4): 159-164.
[8] Liang Yongjian, Wu Wenzhi, Shi Zesheng, Tang Liqiu, Song Xiupeng, Yan Meixin, Guo Qiang, Qin Changxian, He Hongliang, Zhang Xiaoqiu. Estimation of Sugarcane Plant Height Based on UAV RGB Remote Sensing [J]. Crops, 2023, 39(1): 226-232.
[9] Su Lirong, Tan Yumo, Qin Fang, Li Qin, Zeng Chengcheng, Li Zhongyi, Wei Caihui, Dong Wenbin, Liang Jun, He Tieguang. Effects of Reduced Chemical Fertilizer on Yield and Main Agronomic Traits of Ratoon Sugarcane under Conditions of Returning Green Mung Bean/Black Bean into Field [J]. Crops, 2022, 38(6): 105-110.
[10] Yin Xilong, Shi Yang, Li Wangsheng, Xing Wang. Photosynthetic Physiological Response to Drought Stress in Sugar Beet at Seedling Stage [J]. Crops, 2022, 38(6): 152-158.
[11] Yan Peng, Dong Xuerui, Lu Lin, Fang Mengying, Li Yijie, Wang Weizan, Dong Zhiqiang. Effects of NAA/KT Presoaking on Sugarcane Yield, Root Development and Lodging Resistance [J]. Crops, 2022, 38(4): 99-106.
[12] Tan Qinliang, Cheng Qin, Pan Chenglie, Zhu Pengjin, Li Jiahui, Song Qiqi, Nong Zemei, Zhou Quanguang, Pang Xinhua, Lü Ping. Effects of Drought Stress on Physiological Indexes of New Sugarcane Variety Guire 2 [J]. Crops, 2022, 38(3): 161-167.
[13] Cheng Qin, Tan Qinliang, Li Jiahui, Zhu Pengjin, Zhou Quanguang, Ou Kewei, Lu Yefei, Lü Ping, Pang Xinhua. Endogenous Hormones and Enzyme Activity Analysis in Sugarcane Varieties with Different Perennial Root Ages [J]. Crops, 2022, 38(3): 181-186.
[14] Liu Limin, Liu Hongjian, Li Aomei, He Weizhong. Effects of Light and Temperature on Photoautotrophic Rooting for in Vitro Sugarcane Plantlets [J]. Crops, 2022, 38(2): 153-157.
[15] Luo Hanmin, Xiong Faqian, Qiu Lihang, Liu Jing, Duan Weixing, Gao Yijing, Qin Xiayan, Wu Jianming, Li Yangrui, Liu Junxian. Application Study of Molecular Markers Associated with Traits in Sugarcane Molecular Breeding [J]. Crops, 2022, 38(2): 35-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!