Crops ›› 2024, Vol. 40 ›› Issue (1): 141-147.doi: 10.16035/j.issn.1001-7283.2024.01.019

;

Previous Articles     Next Articles

Effects of Accumulated Temperature and Planting Density on Pre-Winter Growth of Wheat

Liu Hongjie1(), Ren Dechao1(), Ge Jun1, Zhang Suyu1, Lü Guohua2, He Xun3   

  1. 1Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu 476000, Henan, China
    2Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, Henan, China
  • Received:2022-09-01 Revised:2023-09-27 Online:2024-02-15 Published:2024-02-20
  • Contact: Ren Dechao E-mail:liuhj84@163.com;rdchao1@163.com

Abstract:

In order to evaluate the effects of accumulated temperature and plant density on morphological indexes of winter wheat before overwintering, four sowing dates (Oct. 5th, Oct. 10th, Oct. 15th, Oct. 20th) and three planting densities (1.20×106, 2.70×106 and 4.20×106 plants/ha) randomized block field trials were carried out using ‘Zhoumai 22’ at the Shuangba Experimental Station of Shangqiu Academy of Agriculture and Forestry Sciences in 2017-2020. The results showed that, the secondary roots number, main stem leaf age, tiller number per plant, dry matter weight of above ground per plant, plant height, leaf area per plant and tiller number per unit area of winter wheat decreased gradually with the delay of sowing. There were significant differences in main stem leaf age, dry matter weight of above ground and leaf area per plant among treatments. With the increase of plant density, the secondary roots number, main stem leaf age, tiller number per plant, dry matter weight of above ground and leaf area per plant all decreased. The plant height and tiller number per unit area increased gradually with the increase of density. The tiller number per unit area reached significant level, but the plant height did not reach significant level. Plant height, main stem leaf age, dry matter weight of above ground and leaf area per plant had significant effects on sowing date, and the density effects on secondary roots number, tiller number per plant and leaf area index were significant. By accumulated temperature, it was easier to adjust the number of secondary roots, and tiller number per unit area, the main stem leaf age and tillers per plant were next. The tiller number per unit area was adjusted most easily by sowing density, followed by secondary roots number and tiller number per plant, while the main stem leaf age was hardly controlled by sowing density. Based on the winter wheat growth index and accumulated temperature data, the quantitative relationship between accumulated temperature and planting density with growth indexes of winter wheat before overwintering was established. The estimated values of each index fitted well with the measured values, and the estimated model had excellent precision, which can be used to estimate the number of secondary roots, main stem leaf age, tiller number per plant and tiller number per unit area of winter wheat before overwintering.

Key words: Accumulated temperature, Density, Pre-winter growth, Wheat, Quantitative analysis

Table 1

Weather conditions from sowing to over-wintering period"

年份
Year
播期
(月-日)
Sowing
(month-day)
越冬前积温
Accumulated
temperature before
overwintering (℃)
越冬起始日(月-日)
Start day of
overwintering
(month-day)
2017 10-05 868.5 12-12
10-10 749.4
10-15 660.7
10-20 568.6
2019 10-05 702.2 12-05
10-10 629.6
10-15 544.3
10-20 480.5
2020 10-05 686.9 12-09
10-10 621.1
10-15 556.2
10-20 489.1

Table 2

Effects of different sowing dates and sowing density treatments on the growth of winter wheat before over-wintering period"

处理
Treatment
次生根数
Number of
secondary
roots
主茎叶龄
Main
stem leaf
age
单株茎蘖数
Tiller
number
per plant
株高
Plant
height
(cm)
单株地上部
干物质重
Dry matter weight
of above ground
per plant (g)
单株叶面积
Leaf area
per plant
(cm2)
单位面积
干物质重
Dry matter weight
per unit area
(kg/hm2)
LAI 单位面积
茎蘖数
Tiller number
per unit area
(×104/hm2)
S1 10.56±0.74a 6.43±0.17a 7.00±0.50a 32.62±3.53a 1.17±0.16a 135.50±18.32a 2.90±0.34a 3.32±0.42a 1632.37±227.73a
S2 9.27±0.52a 5.99±0.20b 6.43±0.44a 30.58±3.58ab 0.97±0.05b 107.53±4.29b 2.38±0.12b 2.68±0.07b 1555.45±98.87a
S3 7.79±0.79b 5.43±0.20c 5.64±0.38b 25.41±3.56bc 0.70±0.03c 74.87±5.16c 1.77±0.11c 1.94±0.14c 1367.36±34.27b
S4 6.42±0.79c 4.70±0.22d 4.66±0.31c 21.30±3.14c 0.45±0.10d 47.70±4.92d 1.10±0.23d 1.23±0.14d 1036.61±142.36c
D1 10.29±1.09a 6.25±0.50a 7.74±0.32a 25.46±2.92a 1.02±0.14a 110.17±7.17a 1.23±0.17c 1.32±0.09c 928.99±38.49c
D2 8.40±0.65b 5.92±0.42a 5.44±0.44b 27.51±3.45a 0.79±0.07b 88.31±3.00b 2.13±0.19b 2.38±0.08b 1468.99±118.34b
D3 6.83±0.21c 5.63±0.23a 4.28±0.42c 28.84±4.74a 0.66±0.03b 75.72±6.19c 2.77±0.11a 3.18±0.26a 1795.86±177.74a

Table 3

Analysis of variance for growth index of winter wheat before overwintering"

变异来源
Source of
variance



df
株高
Plant
height
次生根数
Number of
secondary
roots
主茎叶龄
Main stem
leaf age
单株茎蘖数
Tiller
number
per plant
单株地上部
干物质重
Dry matter weight
of above ground
per plant
单株叶面积
Leaf area
per plant
LAI 单位面积
干物质量
Dry matter
weight per
unit area
单位面积
茎蘖数
Tiller
number
per unit area
模型Model 35 84.68** 25.60** 96.49** 50.51** 53.58** 64.32** 58.57** 57.74** 39.07**
年份(Y) 2 360.41** 23.58** 170.65** 25.34** 35.25** 11.78** 8.83** 17.13** 27.93**
播期(S) 3 627.47** 145.04** 898.10** 174.75** 427.50** 557.97** 329.08** 325.13** 118.60**
密度(D) 2 128.62** 180.28** 113.66** 507.59** 195.37** 154.60** 463.88** 429.76** 430.37**
Y×S 6 7.06** 2.42* 9.13** 7.17** 6.93** 13.24** 7.10** 6.31** 6.24**
Y×D 4 2.02 4.84** 7.68** 0.22 6.34** 2.47 2.83* 0.45 3.66**
S×D 6 2.85* 1.52 1.76 17.73** 8.60** 22.10** 9.50** 16.09** 2.52*
Y×S×D 12 2.98** 0.85 1.53 2.29* 1.88 1.72 0.54 1.28 2.31*

Table 4

Quantitative relationship between accumulated temperature and density with growth indexes before overwintering"

指标Indicator 方程Equation R2
次生根数
Number of secondary roots
Y=2.603+0.014xT-0.012xD 0.880***
主茎叶龄
Main stem leaf age
Y=1.229+0.008xT-0.002xD
0.869***
单株茎蘖数
Tiller number per plant
Y=3.030+0.009xT-0.012xD
0.838***
单位面积茎蘖数
Tiller number per unit area
Y=-755.621+2.181xT+2.890xD
0.889***

Fig.1

The relationship between the estimated and measured values"

[1] 赵广才. 小麦优势蘖利用超高产栽培技术研究. 中国农业科技导报, 2007, 9(2):44-48.
[2] 苏玉环, 刘保华, 马永安, 等. 种植密度对不同分蘖类型冬小麦分蘖成穗及产量的影响. 河北农业科学, 2017, 21(4):13-17.
[3] 杨洪宾, 徐成忠, 王晓英, 等. 济宁地区小麦冬前苗情评估体系及其适宜指标. 山东农业科学, 2011(5):42-45.
[4] 毕常锐, 白志英, 杨訸, 等. 种植密度对小麦群体光能资源利用的调控效应. 华北农学报, 2010, 25(5):171-176.
doi: 10.7668/hbnxb.2010.05.035
[5] 刘萍, 魏建军, 张东升, 等. 播期和播量对滴灌冬小麦群体性状及产量的影响. 麦类作物学报, 2013, 33(6):1202-1207.
[6] 朱元刚, 董树亭, 贾春兰, 等. 播期对冬小麦品种登海5197群体发育及产量形成的影响. 山东农业科学, 2009(11):16-20.
[7] 陈先冠, 冯利平, 马雪晴, 等. 不同播期和灌水条件下冬小麦生物量变化与产量的模拟. 农业机械学报, 2021, 52(10):349-357.
[8] 金彦刚, 丁锦峰, 袁权, 等. 播期和密度对江苏淮北强筋小麦籽粒产量和品质的影响. 中国农学通报, 2022, 38(18):1-7.
doi: 10.11924/j.issn.1000-6850.casb2021-0829
[9] 李巧云, 年力, 刘万代, 等. 冬前积温对河南省小麦冬前生长发育的影响. 中国农业气象, 2010, 31(4):563-569.
[10] 马美娟, 陈小新, 张云霞, 等. 分期播种冬小麦农田小气候特征及其生育状况分析. 江苏农业学报, 2021, 37(3):613-621.
[11] 刘镕源, 王纪华, 杨贵军, 等. 冬小麦叶面积指数地面测量方法的比较. 农业工程学报, 2011, 27(3):220-224.
[12] 姜会飞. 农业气象学. 北京: 科学出版社, 2013.
[13] Biemath C, Gayler S, Bittenr S, et al. Evaluating the ability of four crop models to predict different environmental impacts on spring wheat grown in open-top chambers. European Journal Agronomy, 2011, 35:71-82.
doi: 10.1016/j.eja.2011.04.001
[14] 孙淑欣. 播期和密度对不同穗型小麦幼穗分化调控机理的研究. 泰安:山东农业大学, 2019.
[15] 郜庆炉, 薛香, 梁云娟, 等. 暖冬气候条件下调整小麦播种期的研究. 麦类作物学报, 2002, 22(2):49-50.
[16] 朱傅祥, 吴建中, 郁祖良, 等. 播期密度对豫麦29群个体质量性状的影响. 江苏农业科学, 2000(5):21-22.
[17] 马青荣, 成林, 杨光仙, 等. 基于分期播种试验的小麦越冬前适宜指标探讨. 气象与环境科学, 2011: 34(4):63-67.
[18] 张黛静, 马雪, 王晓东, 等. 品种与密度对豫中地区小麦光合生理特性及光能利用率的影响. 麦类作物学报, 2014, 34(3):388-394.
[19] 刘克礼, 高聚林, 张铁山, 等. 春小麦幼穗分化进程及其与植株生长发育的关系. 麦类作物学报, 2003, 23(3):58-63.
[20] 徐丽娜, 冯伟, 盛坤, 等. 小麦兰考矮早八茎蘖幼穗激素差异及其密度调控效应. 中国农业科学, 2011, 44(6):1283-1291.
[21] 闫锦涛, 冯利平, 李扬, 等. 播期和播深对冬小麦越冬前生长性状的影响. 农业机械学报, 2022, 53(2):327-335.
[22] 刘萍, 魏建军, 张东升, 等. 播期和播量对滴灌冬小麦群体性状及产量的影响. 麦类作物学报, 2013, 33(6):1202-1207.
[23] 徐晖, 崔怀洋, 张伟, 等. 播期对小麦冬前幼苗生长和积温的调控效应. 中国农学通报, 2015, 31(3):99-105.
doi: 10.11924/j.issn.1000-6850.2014-1823
[24] 海江波, 由海峡, 张保军. 不同播量对面条专用小麦品种小偃503生长发育、产量及品质的影响. 麦类作物学报, 2002, 22(3):92-94.
[25] 周冬冬, 李必忠, 张军, 等. 播量对淮北地区旱茬小麦产量及群体性状的影响. 江苏农业科学, 2020, 48(20):88-92.
[26] 于振文. 作物栽培学各论. 北京: 中国农业出版社, 2003:85.
[27] 李巧云, 尹钧, 刘万代, 等. 黄淮麦区半冬性小麦冬前壮苗叶龄指标的确定. 河南农业科学, 2009(12):35-38.
doi: 10.3969/j.issn.1004-3268.2009.12.009
[28] 崔彦生, 韩江伟, 曹刚, 等. 冬前积温对河北省中南部麦区冬小麦适宜播期的影响. 中国农学通报, 2008, 7(24):195-198.
[29] 毛凤梧, 蒋向, 郭新建, 等. DB41/T 1159-2015:小麦苗情监测规范. 郑州:河南省市场监督管理局, 2016.
[30] 鞠正春, 高瑞杰, 李斯深, 等.DB37/T4366-2021:冬小麦苗情等级划分标准. 济南: 山东省市场监督管理局, 2021.
[31] 陈若礼, 周宗民, 李青云, 等. 小麦叶龄模式及其在高产栽培上的应用. 中国农学通报, 2004, 20(3):133-134,158.
[1] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Wang Yanjie, Zhao Guangcai. Effects of Nitrogen Dressing Time and Proportion on Wheat Grain Filling and Its Physiological Mechanism [J]. Crops, 2024, 40(1): 174-179.
[2] Hao Xiaocong, Li Xinyu, Hou Qiling, Yang Jifang, An Chunhui, Wang Changhua, Ye Zhijie, Zhang Fengting. Effects of Nitrogen Application Rate on the Quality of Two-Line Hybrid Wheat [J]. Crops, 2024, 40(1): 187-192.
[3] Hao Yani, Pei Hongbin, Gao Zhenfeng, Zhang Yijun, Yang Zhenping. Effects of Bacillus vallismortis and Straw Replacing Phosphorus Fertilizer on Growth, Yield and Quality of Tartary Buckwheat [J]. Crops, 2024, 40(1): 204-213.
[4] Lü Baolian, Yang Yuxin, Cui Licao, Shi Feng, Ma Liang, Kong Xiuying, Zhang Lichao, Ni Zhiyong. Identification of bHLH Family Transcription Factors of Wheat and Expression Analysis under Salt Stress [J]. Crops, 2024, 40(1): 65-72.
[5] Zhang Rong, Jiang Enxi, Chen Si, Yu Xurun, Chen Gang, Ran Liping, Xiong Fei. Study on the Grain Formation in Wheat Spike Regulated by Ethephon and 1-Methylcyclopropene [J]. Crops, 2023, 39(6): 101-107.
[6] Liu Zhewen, Guo Dandan, Chang Xuhong, Wang Demei, Wang Yanjie, Yang Yushuang, Liu Xiwei, Wang Yujiao, Shi Shubing, Zhao Guangcai. Response of Nitrogen Accumulation and Translocation after Anthesis in Strong Gluten Wheat to Nitrogen Topdressing Period and Proportion [J]. Crops, 2023, 39(6): 114-120.
[7] Liu Xiwei, Wang Demei, Wang Yanjie, Yang Yushuang, Zhao Guangcai, Chang Xuhong. Impacts Mechanism of Drought and Heat Stress in the Middle and Late Growing Period on Wheat Grain Yield Formation Process and Mitigation Measures [J]. Crops, 2023, 39(6): 17-25.
[8] Chen Dan, Xiong Furong, Wu Shaoyun, Bai Xiaodong, Zhou Guoyan, Wu Xiaoyang, Cai Qing. Molecular Detection and Geographic Distribution of Stripe Rust Resistance Gene Loci in Yunnan Wheat Landraces [J]. Crops, 2023, 39(6): 41-46.
[9] Wang Yifan, Ren Ning, Dong Xiangyang, Zhao Yanan, Ye Youliang, Wang Yang, Huang Yufang. Effects of Controlled-Release and Ordinary Urea on Wheat Yield, Nitrogen Absorption and Economic Benefit [J]. Crops, 2023, 39(5): 117-123.
[10] Yang Mei, Yang Weijun, Gao Wencui, Jia Yonghong, Zhang Jinshan. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Dry Matter Transport, Agronomic Characteristics and Yield of Winter Wheat in Irrigation Area [J]. Crops, 2023, 39(5): 138-144.
[11] Ling Yibo, Wang Binjie, Hu Yimin, Heinar·Madithermic mann, Chen Nianlai. Responses of Dry Matter Translocation and Yield Formation to Planting Density and Row Spacing of Sunflower [J]. Crops, 2023, 39(5): 197-203.
[12] Huang Jie, Ge Changbin, Wang Jun, Cao Yanyan, Qiao Jiliang, Liao Pingʼan, Song Danyang, Lu Wenying. Simulation Model of Relative Meteorological 1000-Grain Weight of Wheat of Luohe Based on Principal Component Regression [J]. Crops, 2023, 39(5): 212-218.
[13] Liu Shuhan, Chen Lei, Zhang Jianchao, Hu Gan, Sun Junyan, Liu Dongtao, Wang Junwei. Gene Differential Expression Analysis of TMS5 in the Fertility Conversion of Wheat BNS Sterile Line [J]. Crops, 2023, 39(5): 24-29.
[14] Zhang Dongxu, Hu Danzhu, Yan Jinlong, Feng Liyun, Wu Zhiyuan, Zhang Junling, Li Yanhua. Effects of Spraying Streptomyces on Yield and Photosynthetic Characteristics of Late-Sown Wheat under Different Crop Rotations [J]. Crops, 2023, 39(5): 255-263.
[15] Song Guicheng, Yu Guihong, Zhang Peng, Ma Hongxiang. Evaluation on Waterlogging Resistance of Different Wheat Varieties (Lines) at Jointing Stage [J]. Crops, 2023, 39(5): 30-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!