Crops ›› 2024, Vol. 40 ›› Issue (3): 223-230.doi: 10.16035/j.issn.1001-7283.2024.03.030

;

Previous Articles     Next Articles

Effects of Foliar Spraying Calcium Fertilizer on Lodging Resistance and Yield Formation of Spring Maize

Xu Rongqiong1(), Zhang Yifei1,2,3(), Du Jiarui1, Yin Xuewei1, Yang Kejun1(), Sun Yishan1, Li Zesong1, Li Guibin1, Lu Yuxin1, Liu Haichen1, Li Weiqing1, Li Jiayu1   

  1. 1College of Agronomy, Heilongjiang Bayi Agricultural University / Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, Heilongjiang, China
    2Key Laboratory of Low Carbon Green Agriculture in Northeast Plain, Ministry of Agriculture and Rural Affairs, Daqing 163319, Heilongjiang, China
    3Heilongjiang Province Cultivating Collaborative Innovation Center for Beidahuang Modern Agricultural Industry Technology, Daqing 163319, Heilongjiang, China
  • Received:2023-03-08 Revised:2023-05-19 Online:2024-06-15 Published:2024-06-18

Abstract:

This study employed a pot experiment to investigate the mechanism governing the lodging resistance of maize stalk and yield creation by adding calcium fertilizer on leaf surface. The test material was maize variety Xianyu 335, and five calcium concentration were established, namely 0 (LCK), 3 (LC1), 6 (LC2), 9 (LC3) and 12 g/L (LC4), respectively. Foliar spraying was applied at maize jointing stage. The results showed that compared with LCK, LC2 treatment could significantly reduce the ear height and center of gravity height of maize, and spraying appropriate amount of calcium fertilizer (LC2 and LC3) at jointing stage significantly increased the breaking strength and puncture strength of stem base. Foliar calcium application could promote the development of crusty tissue and vascular bundle, and significantly increase the contents of soluble sugar, cellulose and hemicellulose in the 3rd internode stem of maize, which reached the maximum under LC3 treatment. Foliar application of calcium fertilizer at LC2-LC4 levels could also significantly increase maize grain yield, in which the maximum number of rows per ear of LC2 was 16.35, and the maximum 100-grain weight of LC3 treatment was 31.36 g. According to the comprehensive performance of lodging resistance indexes, chemical composition of stems and grain yield composition of maize, the optimal range of calcium fertilizer concentration of maize leaves was 6-9 g/L, which could effectively shorten the internode length of the base, reduce the ear height, lower the gravity height of the center of maize, optimize the contents of nitrogen and potassium in stems and fiber structure, and promote the development of vascular bundle and effectively increase the internode density and fullness, which could enhance the mechanical strength, additionally, it could promote ear development, increase the number of rows per ear, 100-grain weight, and yield.

Key words: Maize, Calcium fertilizer, Foliar spraying, Lodging resistance characteristics, Yield

Fig.1

Plant height, ear height and height of gravity center of maize under different calcium application levels by foliar spraying The different lowercase letters indicate the significant difference at 0.05 level, the same below."

Table 1

Morphological and structural characteristics of the 3rd internode of the basal part under different calcium fertilizer treatments"

处理
Treatment
节间长度
Internode length (cm)
茎粗
Stem diameter (cm)
茎壁厚度
Culm wall thickness (mm)
截面面积
Area of cross section (cm2)
截面扁平率
Oblateness
LCK 15.00±1.21a 2.093±0.059b 0.188±0.015b 3.42±0.11a 0.154±0.006a
LC1 13.09±1.19b 2.128±0.105ab 0.195±0.008b 3.54±0.37a 0.153±0.016a
LC2 11.64±1.12c 2.212±0.159a 0.218±0.018a 3.84±0.57a 0.153±0.007a
LC3 11.64±0.75c 2.189±0.123a 0.200±0.007b 3.75±0.42a 0.141±0.013a
LC4 12.93±1.03b 2.159±0.161ab 0.187±0.013b 3.65±0.55a 0.156±0.011a

Table 2

Mechanical properties of the basal 3rd internode and stems of maize under different calcium fertilizer treatments"

处理
Treatment
抗折力
Breaking
resistance (N)
穿刺强度
Puncture strength
(N/mm2)
秆型指数
Stem index
(%)
弯曲力矩
Bending moment
(g·cm)
断面模数
Section modulus
(mm3)
弯曲应力
Bending stress
(g·cm)
抗断弯矩
Breaking moment
(g·cm)
LCK 717.24±69.46c 79.86±5.87d 0.74±0.00ab 248 980.83±19 864.75a 658.75±49.44c 152.93±15.46d 179 310.00±17 364.56c
LC1 712.80±183.68c 99.02±7.07c 0.71±0.05b 235 151.97±3003.29ab 731.72±93.78c 257.09±32.09c 178 200.00±14 934.23c
LC2 830.96±79.52b 125.08±5.76a 0.76±0.03a 220 496.64±2364.53bc 874.86±125.14a 317.99±22.27b 241.0.00±17 696.14a
LC3 892.76±104.58ab 114.10±10.41b 0.76±0.02a 211 908.57±18 112.93cd 796.81±85.41ab 322.46±24.23b 223 190.00±14 848.67ab
LC4 964.72±240.06a 91.88±5.16c 0.73±0.04ab 202 756.04±2496.15d 729.47±129.67bc 392.02±16.66a 207 740.00±19 879.96b

Fig.2

Nitrogen, phosphorus and potassium contents in the basal 3rd internode of maize under different levels of calcium fertilizer"

Fig.3

Soluble sugar, cellulose and hemicellulose contents in the basal 3rd internode of maize under different levels of calcium fertilizer"

Table 3

Quantitative parameters of microstructure of maize stems under different levels of calcium fertilizer"

处理
Treatment
硬皮组织厚度
Stem wall thickness (mm)
皮层厚度
Cortex thickness (μm)
大维管束数目
Number of big vascular bundles
小维管束数目
Number of small vascular bundles
LCK 0.75±0.02c 53.59±2.05d 142.3±3.3c 198.7±14.3d
LC1 0.77±0.02bc 64.78±2.77c 190.5±20.7b 268.8±18.8c
LC2 1.07±0.13a 80.09±1.02b 208.7±7.3a 293.8±13.8ab
LC3 0.89±0.06bc 85.42±3.14a 223.7±6.9a 301.3±3.2a
LC4 0.81±0.06c 87.89±0.09a 188.2±4.1c 275.9±3.9bc

Fig.4

Changes of microstructure of maize stems under different levels of calcium fertilizer"

Table 4

Quantitative parameters of microstructure of large vascular bundle in the center of maize stems under different levels of calcium fertilizer"

处理
Treatment
韧皮部面积
Area of phloem (mm2)
木质部面积
Area of xylem (mm2)
大维管束平均面积
Area of big vascular bundles (mm2)
维管束内厚壁细胞厚度
Vascular bundles sheath thickness (μm)
LCK 0.0347±0.0019c 0.0155±0.0018b 0.0502±0.0033c 51.34±3.92c
LC1 0.0421±0.0051b 0.0259±0.0020a 0.0680±0.0060b 56.72±3.29b
LC2 0.0442±0.0045ab 0.0263±0.0016a 0.0705±0.0049ab 62.73±3.69a
LC3 0.0502±0.0044a 0.0281±0.0017a 0.0783±0.0054a 57.01±1.54b
LC4 0.0414±0.0033b 0.0267±0.0035a 0.0682±0.0072b 50.93±3.90c

Fig.5

Microstructure changes of large vascular bundles in the center of maize stems under different levels of calcium fertilizer"

Table 5

Grain yield and its components of maize under different levels of calcium fertilizer"

处理
Treatment
穗行数
Row number
per ear
行粒数
Kernel
number
per row
百粒重
100-grain
weight
(g)
籽粒产量
(g/株)
Grain yield
(g/plant)
LCK 15.60±0.10b 35.13±0.85a 27.76±1.07c 152.13±5.58bc
LC1 15.53±0.20b 36.40±0.75a 29.61±0.68b 167.38±7.13b
LC2 16.35±0.25a 36.15±0.55a 29.87±0.40b 176.55±5.07a
LC3 16.10±0.31ab 36.35±0.15a 31.36±0.49a 183.53±3.98a
LC4 15.67±0.58b 36.90±1.60a 29.51±0.21b 170.63±12.79b
[1] 李保国, 刘忠, 黄峰, 等. 巩固黑土地粮仓保障国家粮食安全. 中国科学院院刊, 2021, 36(10):1184-1193.
[2] 明博, 谢瑞芝, 侯鹏, 等. 2005-2016年中国玉米种植密度变化分析. 中国农业科学, 2017, 50(11):1960-1972.
doi: 10.3864/j.issn.0578-1752.2017.11.002
[3] 靳英杰, 李鸿萍, 安盼盼, 等. 玉米抗倒性研究进展. 玉米科学, 2019, 27(2):94-98,105.
[4] 安英辉, 张健, 王国庆. 2015年黑龙江部分地区玉米倒伏原因及预防措施. 中国种业, 2016(4):36-37.
[5] 王怀鹏, 张翼飞, 杨克军, 等. 硅肥不同喷施浓度对玉米抗倒伏性能及产量构成的调控效应. 玉米科学, 2020, 28(3):111-118.
[6] Sposaro M M, Chimenti C A, Hall A. Root lodging in sunflower. Variations in anchorage strength across genotypes, soil types, crop population densities and crop developmental stages. Field Crops Research, 2008, 106(2):179-186.
[7] 吴琼, 杨克军, 张翼飞, 等. 不同基因型玉米耐密植抗倒性分析及其鉴定指标的筛选. 玉米科学, 2017, 25(6):79-86.
[8] 薛军, 李璐璐, 谢瑞芝, 等. 倒伏对玉米机械粒收田间损失和收获效率的影响. 作物学报, 2018, 44(12):1774-1781.
doi: 10.3724/SP.J.1006.2018.01774
[9] 袁承志, 陈坦, 张振, 等. 不同养分环境下钙添加对柏木家系苗木生长和根系发育的影响. 应用与环境生物学报, 2020, 26(5):1161-1168.
[10] 周双云, 蒋晶, 高龙燕, 等. 不同浓度CaCl2对盐胁迫下巴西蕉幼苗生理的影响. 应用与环境生物学报, 2014, 20(3):449-454.
[11] Gifford J, Walsh M, Vogel H. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. The Biochemical Journal, 2007, 405(2):199-221.
[12] Hepler P K, Winship L J. Calcium at the cell wall-cytoplast interface. Journal of Integrative Plant Biology, 2010, 52(2):147-160.
doi: 10.1111/j.1744-7909.2010.00923.x
[13] 邓文. 施硅、 钙、氮、有机肥与覆膜旱作对水稻抗倒性及产量的影响. 长沙: 湖南农业大学, 2009.
[14] Li C Z, Tao J, Zhao D Q, et al. Effect of calcium sprays on mechanical strength and cell wall fractions of herbaceous peony (Paeonia lactiflora pall.) inflorescence stems. International Journal of Molecular Sciences, 2012, 13(4):4704-4713.
[15] 殷静. 大豆茎倒伏突变体基因定位、转录组测序及2个木质素合成基因的克隆研究. 南京: 南京农业大学, 2013.
[16] Tang Y H, Zhao D Q, Meng J S, et al. EGTA reduces the inflorescence stem mechanical strength of herbaceous peony by modifying secondary wall biosynthesis. Horticulture Research, 2019, 6(1):1302-1314.
[17] 张磊, 王玉峰, 陈雪丽, 等. 硅钙肥在玉米上的应用效果研究. 黑龙江农业科学, 2011, 205(7):48-50.
[18] 边大红, 刘梦星, 牛海峰, 等. 施氮时期对黄淮海平原夏玉米茎秆发育及倒伏的影响. 中国农业科学, 2017, 50(12):2294-2304.
doi: 10.3864/j.issn.0578-1752.2017.12.010
[19] 崔海岩, 靳立斌, 李波, 等. 遮阴对夏玉米茎秆形态结构和倒伏的影响. 中国农业科学, 2012, 45(17):3497-3505.
doi: 10.3864/j.issn.0578-1752.2012.17.005
[20] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[21] 高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006.
[22] 熊素敏, 左秀凤, 朱永义. 稻壳中纤维素、半纤维素和木质素的测定. 粮食与饲料工业, 2005(8):40-41.
[23] 杨可攀, 顾万荣, 李丽杰, 等. DCPTA和ETH复配剂对玉米茎秆力学特性及籽粒产量的影响. 核农学报, 2017, 31(4):809-820.
doi: 10.11869/j.issn.100-8551.2017.04.0809
[24] 刘仲秋, 刘馨惠, 卞城月, 等. 秸秆覆盖条件下宽幅精播冬小麦茎秆抗倒性研究. 灌溉排水学报, 2016, 35(1):6-10.
[25] 吴晓然, 张巫军, 伍龙梅, 等. 超级杂交籼稻抗倒能力比较及其对氮素的响应. 中国农业科学, 2015, 48(14):2705-2717.
doi: 10.3864/j.issn.0578-1752.2015.14.003
[26] 薛军, 王克如, 谢瑞芝, 等. 玉米生长后期倒伏研究进展. 中国农业科学, 2018, 51(10):1845-1854.
doi: 10.3864/j.issn.0578-1752.2018.10.004
[27] 晏小凤, 汤雯雯, 周玉姝, 等. 玉米倒伏研究进展及应对倒伏的措施. 山东农业科学, 2022, 54(10):153-160.
[28] 刘文彬, 冯乃杰, 张盼盼, 等. 乙烯利和激动素对玉米茎秆抗倒伏和产量的影响. 中国生态农业学报, 2017, 25(9):1326-1334.
[29] 王娜, 李凤海, 王志斌, 等. 不同耐密型玉米品种茎秆性状对密度的响应及与倒伏的关系. 作物杂志, 2011(3):67-70.
[30] Pellerin S, Trendel R, Duparque A. Relationship between morphological characteristics and lodging susceptibility of maize (Zea mays L.). Agronomie, 1990, 10(6):439-446.
[31] Novacek M J, Mason S C, Galusha T D, et al. Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agronomy Journal, 2013, 105:268-276.
[32] 翁萌萌. 不同玉米品种茎秆特性及其与抗倒性关系研究. 郑州: 河南农业大学, 2016.
[33] 邓文, 青先国, 蒲熙, 等. 施钙对超级杂交稻抗倒性的影响. 生态学杂志, 2009, 28(4):632-637.
[34] 魏凤珍, 李金才, 王成雨, 等. 氮肥运筹模式对小麦茎秆抗倒性能的影响. 作物学报, 2008, 34(6):1080-1085.
[35] 袁志华, 李英骏, 张均, 等. 磷钾肥配施对小麦茎秆力学特性的影响. 农业工程学报, 2010, 26(4):147-150.
[36] 杨艳华, 朱镇, 张亚东, 等. 水稻不同生育期茎秆生化成分的变化及其与抗倒伏能力的关系. 植物生理学报, 2011, 47(12):1181-1187.
[37] Miao W, Li F C, Lu J C, et al. Biochar application enhanced rice biomass production and lodging resistance via promoting co-deposition of silica with hemicellulose and lignin. Science of the Total Environment, 2023, 855:158818.
[38] Liebhardt W C, Murdock J T. Effect of potassium on morphology and lodging of corn. Agronomy Journal, 1965, 57(4):325-328.
[39] 李波, 张吉旺, 崔海岩, 等. 施钾量对高产夏玉米抗倒伏能力的影响. 作物学报, 2012, 38(11):2093-2099.
doi: 10.3724/SP.J.1006.2012.02093
[40] 顾学花, 孙莲强, 高波, 等. 施钙对干旱胁迫下花生生理特性、产量和品质的影响. 应用生态学报, 2015, 26(5):1433-1439.
[41] 于天一, 郑亚萍, 邱少芬, 等. 酸化土壤施钙对不同花生品种(系)钙吸收、利用及产量的影响. 作物杂志, 2021(4):80-85.
[42] 孙义祥, 袁嫚嫚, 邬刚. 不同土壤肥力水平下钙对水稻专用肥增产效应的影响. 中国农学通报, 2014, 30(9):77-81.
[43] 杨丽颖, 文翠梅. 水稻应用速效钙效果研究. 北方水稻, 2011, 41(2):66,70.
[44] 尹雪巍, 张翼飞, 杨克军, 等. 不同施钙水平对松嫩平原西部玉米干物质积累、产量及品质的影响. 玉米科学, 2020, 28(3):155-162.
[1] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[2] Liu Yue, Jia Yonghong, Yu Yuehua, Zhang Jinshan, Wang Runqi, Li Dandan, Shi Shubing. Effects of Nitrogen Fertilizer Management on Growth and Development, Yield and Quality of Peanut in Northern Xinjiang [J]. Crops, 2024, 40(3): 119-126.
[3] Zhang Suyu, Yue Junqin, Li Xiangdong, Jin Haiyang, Ren Dechao, Yang Mingda, Shao Yunhui, Wang Hanfang, Fang Baoting, Zhang Deqi, Shi Yanhua, Qin Feng, Cheng Hongjian. Effects of Nitrogen Application on Photosynthetic Rate, Dry Matter Accumulation after Anthesis and Yield of Zhengmai 366 [J]. Crops, 2024, 40(3): 127-132.
[4] Xia Yulan, Wang Dexun, Zhao Yuanyuan, Fan Zhiyong, Li Juan, Wang Ge, Zhao Zhihao, Shi Hongzhi. Effects of Potassium Fertilizer Dosage and Topdressing Period on Chemical Composition, Yield and Quality of Leaves ofBlack Shank-Resistant Tobacco Honghuadajinyuan [J]. Crops, 2024, 40(3): 133-140.
[5] Chen Biwei, Ju Xikai, Sun Yiming, Li Qinghua, Liu Qing, Zeng Lusheng. Effects of Drought in Different Periods on Yield Formation and Starch Gelatinization Characteristics of Starchy Sweet Potato [J]. Crops, 2024, 40(3): 141-147.
[6] Yi Qin, Huang Miao, Yang Guotao, Hu Yungao, Chen Hong, Wang Xuechun. Effects of Combined Application of Organic and Inorganic Fertilizers on Yield and Quality of Rapeseed in Sichuan [J]. Crops, 2024, 40(3): 163-167.
[7] Zhang Lin, Wu Wenming, Zhou Dengfeng, Peng Chen, Wang Shiji. Responses of Growth and Yield of Fresh-Eating Maize “Caitiannuo 100” to Autumn Sowing Date under Facility Cultivation [J]. Crops, 2024, 40(3): 175-179.
[8] Li Zhi, Guo Xiaoxia, Huang Chunyan, Jian Caiyuan, Tian Lu, Han Kang, Ren Xiaoyun, Ren Huimin, Zhang Peng, Liu Jia, Kong Dejuan, Wang Zhenzhen, Su Wenbin. Effects of Nitrogen Base Fertilizer and Topdressing Ratio on the Growth, Yield and Sugar Content of Sugar Beet under Shallow Buried Drip Irrigation [J]. Crops, 2024, 40(3): 186-191.
[9] Ou Kunpeng, Wang Xueli, Wang Yan, He Minghui, Huang Liankang, Zheng Debo, Lin Qian. Effects of Different Proportions of Nitrogen, Phosphorus and Potassium on Photosynthetic Characteristics, Yield and Quality of Pueraria lobata var. thomsonii [J]. Crops, 2024, 40(3): 216-222.
[10] Luo Yuankai, Li Ranqiu, Li Yimeng, Tang Wei, Liu Yaju. Effects of Planting Density and EBR Concentration on the Yield and Quality of Sweet Potato [J]. Crops, 2024, 40(3): 231-237.
[11] Li Jiaqi, Shi Jianguo, Chen Qihang, Chang Fengyun, Duan Yizhong, Chai Guaiqiang, Jia Lei, Chen Tao. Effects of Film Mulching on Rhizosphere Soil Microbial Community of Maize in Wind-Sand Grassy Beach Area of Northern Shaanxi Province [J]. Crops, 2024, 40(3): 238-246.
[12] Xie Zhangshu, Xie Xuefang, Zhou Chengxuan, Xu Doudou, Li Jiarui, Tu Xiaoju, Liu Aiyu, Li Fei, Gong Yangcang, He Yunxin, Wei Shangzhi, Wu Bibo, Zhou Zhonghua. A New Cotton Seed Balling Technology and Its Influence on Cotton Seedling Emergence, Yield and Quality [J]. Crops, 2024, 40(3): 257-264.
[13] Qing Chen, Liu Zhengxue, Li Yanjie. Effects of Compound Microbial Fertilizer on Drought Resistance of Maize Seedlings under Drought Stress by Transcriptome Analysis [J]. Crops, 2024, 40(3): 32-39.
[14] Ma Hongzhen, Xu Haitao, Wang Yue, Feng Xiaoxi, Xu Bo, Zhang Jungang, Guo Haibin, Wang Youhua. Analysis of Genetic Diversity and Genetic Distance of Maize Inbred Lines Based on Phenotypic Traits of Husks [J]. Crops, 2024, 40(3): 54-63.
[15] Hu Qingyuan, Gong Dan, Pan Xiaowei, Wang Suhua, Wang Lixia. Joint Identification of New Varieties (Lines) of Cowpea during 2019-2021 Organized by China Agricultural Research System of Food Legume [J]. Crops, 2024, 40(3): 76-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!