Crops ›› 2024, Vol. 40 ›› Issue (3): 231-237.doi: 10.16035/j.issn.1001-7283.2024.03.031

Previous Articles     Next Articles

Effects of Planting Density and EBR Concentration on the Yield and Quality of Sweet Potato

Luo Yuankai(), Li Ranqiu, Li Yimeng, Tang Wei, Liu Yaju()   

  1. Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, Jiangsu, China
  • Received:2023-04-26 Revised:2023-07-06 Online:2024-06-15 Published:2024-06-18

Abstract:

In order to further explore the methods to improve the yield and quality of sweet potato, and provide theoretical parameters for the high-yield cultivation technology of sweet potato in northern China, the impacts of planting density and EBR (24-epibrassinolide) spraying concentration on the yield and quality of sweet potato were studied through the coupling of two factors. The results showed that, under the same planting density, low and high concentrations of EBR were not conducive to the increase of sweet potato yield, SPAD value, Fv/Fm, while high planting density and appropriate concentration of EBR were conducive to the increase of sweet potato yield and photosynthetic characteristics. The planting density was 67 500 plants/ha, and the fresh sweet potato yield was the highest when 150 L/ha of EBR with a concentration of 0.10 mg/L was sprayed. Proper concentration of EBR was conducive to the improvement of the overall quality of sweet potato. Proper increase of cultivation density was conducive to the increase of reducing sugar, protein and starch contents of sweet potato, but would reduce the soluble sugar content. The coupling of appropriate planting density and EBR spraying concentration was beneficial for improving the commercial rates and dry matter contents of sweet potato, but it had no significant impact on the phenotypic traits of sweet potato and had no significant effect on the number of tubers per plant. The main factor restricting the yield of sweet potato was starch content (0.694), followed by reducing sugar content (0.672) and the longest vine length (0.667), while the number of branches had the smallest impact on the yield, and its correlation degree was only 0.511. Moreover, at higher cultivation density and EBR concentration, the yield and quality indicators of sweet potato changed more evenly and stably.

Key words: Sweet potato, Density, EBR, Fresh sweet potato yield, Quality

Table 1

Split zone design of sweet potato planting density and EBR application concentration"

处理
Treatment
EBR浓度
EBR concentration (mg/L)
密度(株/hm2
Density (plant/hm2)
B1D1 0.00 37 500
B2D1 0.02 37 500
B3D1 0.10 37 500
B4D1 0.50 37 500
B1D2 0.00 52 500
B2D2 0.02 52 500
B3D2 0.10 52 500
B4D2 0.50 52 500
B1D3 0.00 67 500
B2D3 0.02 67 500
B3D3 0.10 67 500
B4D3 0.50 67 500

Table 2

Effects of density and EBR coupling on yield and photosynthetic characteristics of fresh sweet potato"

处理
Treatment
产量
Yield (kg/hm2)
SPAD值
SPAD value
Fv/Fm
B1D1 12 947.65±643.22g 37.23±0.80e 0.72±0.00cd
B2D1 13 977.57±581.02g 44.37±0.76b 0.77±0.00a
B3D1 16 478.82±819.57e 37.00±1.21e 0.74±0.01bc
B4D1 10 593.53±270.96h 40.63±0.65d 0.71±0.01de
B1D2 14 124.71±325.17g 36.73±0.38e 0.68±0.01gh
B2D2 15 448.90±794.37f 42.40±0.60c 0.77±0.00a
B3D2 17 784.82±668.08d 40.73±0.25d 0.70±0.02ef
B4D2 11 476.32±496.67h 38.10±0.72e 0.67±0.02h
B1D3 18 244.41±609.37d 38.20±1.35e 0.62±0.01i
B2D3 20 010.00±532.63c 46.07±0.46a 0.74±0.01b
B3D3 23 688.31±707.28a 42.43±0.29c 0.73±0.01cd
B4D3 21 628.46±420.58b 40.27±0.75d 0.69±0.00fg
FF-value
B 114.56** 129.19** 132.11**
D 531.86** 30.97** 43.31**
B×D 19.94** 13.20** 18.50**

Table 3

Effects of density and EBR coupling on root quality of fresh sweet potato mg/g"

处理
Treatment
蛋白质含量
Protein
content
还原糖含量
Reducing
sugar content
可溶性糖含量
Soluble sugar
content
淀粉含量
Starch
content
B1D1 27.29±1.24e 1.19±0.07d 42.67±1.18a 235.80±4.17f
B2D1 30.25±1.09d 1.87±0.10a 41.01±1.51ab 293.70±5.71cd
B3D1 31.71±0.58d 1.30±0.05cd 37.51±2.16c 277.94±6.45e
B4D1 24.51±0.46f 0.92±0.05e 23.09±0.85f 239.61±5.71f
B1D2 33.66±1.05c 1.38±0.07c 39.12±1.02bc 284.56±4.94de
B2D2 35.44±0.70ab 1.87±0.11a 30.09±0.87e 297.27±5.73c
B3D2 36.14±0.91a 1.29±0.08cd 28.37±0.75e 279.65±4.97e
B4D2 31.21±0.67d 1.31±0.05cd 27.51±0.72e 272.48±4.78e
B1D3 23.18±0.65f 1.39±0.05c 41.18±1.07ab 284.69±4.97de
B2D3 31.68±0.95d 1.79±0.07ab 35.18±0.92d 334.19±5.82a
B3D3 34.09±0.60bc 1.68±0.06b 28.83±0.82e 316.86±5.68b
B4D3 27.60±0.49e 1.27±0.04cd 27.82±0.72e 215.01±3.74g
FF-value
B 131.91** 159.66** 279.99** 266.17**
D 171.81** 29.15** 55.32** 83.53**
B×D 19.34** 13.23** 34.36** 66.07**

Table 4

Effects of density and EBR coupling on agronomic characteristics of sweet potato"

处理
Treatment
分枝数
Number of
branches
最长蔓长
Longest vine
length (cm)
茎粗
Stem diameter
(mm)
单株结薯数
Number of tubers
per plant
商品薯率
Commercial potato
rate (%)
薯块干率
Dry rate of sweet
potato tubers (%)
B1D1 12.80±1.30abc 109.67±19.60abc 4.48±0.07abcd 4.40±0.89a 0.89±0.02ab 0.28±0.00d
B2D1 13.25±7.50ab 123.33±27.06ab 5.18±0.56a 3.60±1.14a 0.92±0.02a 0.32±0.00b
B3D1 10.50±2.06abc 112.40±8.92abc 4.66±0.19abcd 4.20±1.92a 0.89±0.02ab 0.33±0.01ab
B4D1 12.80±2.28abc 105.67±14.57abc 4.96±0.33abc 4.80±1.64a 0.85±0.02cd 0.28±0.00d
B1D2 11.20±2.59abc 92.00±7.21c 4.37±0.04bcd 4.40±1.52a 0.78±0.02e 0.33±0.00b
B2D2 13.80±3.83a 128.00±4.58a 5.02±0.22ab 3.60±1.34a 0.91±0.02a 0.33±0.00ab
B3D2 8.00±1.87c 96.00±11.36bc 4.18±0.09d 3.20±1.30a 0.90±0.02a 0.29±0.01d
B4D2 9.40±3.44abc 90.25±12.72c 4.64±0.16abcd 3.80±2.17a 0.82±0.01d 0.30±0.01c
B1D3 8.25±2.05abc 122.67±6.66ab 4.29±0.29cd 3.80±0.84a 0.82±0.01d 0.33±0.01b
B2D3 10.20±0.84abc 111.67±11.06abc 4.78±0.16abcd 4.40±1.14a 0.89±0.02ab 0.34±0.00a
B3D3 8.80±4.15bc 124.00±17.44ab 4.36±0.87bcd 3.80±0.84a 0.86±0.02bc 0.32±0.00b
B4D3 8.80±2.17bc 106.33±19.50abc 4.69±0.45abcd 3.80±0.84a 0.82±0.01d 0.32±0.00b
FF-value
B 2.58 2.89 5.86** 0.39 53.58** 42.17**
D 5.07* 3.20 2.30 0.68 17.54** 75.66**
B×D 0.66 1.62 0.25 0.60 8.20** 46.12**

Table 5

Correlation analysis of density and EBR on various indicators of sweet potato"

指标Index B D
X1 -0.192 0.778**
X2 -0.123 0.272
X3 -0.259 -0.368
X4 -0.314 0.071
X5 -0.560 0.302
X6 -0.747** -0.181
X7 -0.595* 0.326
X8 -0.172 -0.681*
X9 -0.445 0.113
X10 0.200 0.396
X11 0.135 -0.281
X12 -0.393 -0.350
X13 -0.340 0.513

Table 6

Correlation between yield, quality and photosynthetic characteristics of sweet potato"

处理Treatment X1 X2 X3 X4 X5 X6 X7 X12 X13
X1 1.000
X2 0.358 1.000
X3 0.005 0.606* 1.000
X4 0.220 0.235 0.459 1.000
X5 0.379 0.683* 0.551 0.496 1.000
X6 -0.067 -0.211 -0.031 -0.167 0.257 1.000
X7 0.328 0.536 0.300 0.530 0.768** 0.181 1.000
X8 0.052 0.541 0.798** 0.335 0.461 0.086 0.304 1.000
X9 0.543 0.282 0.14 0.223 0.684* 0.280 0.555 -0.059 1.000

Table 7

Variation coefficients analysis of yield and quality indexes of sweet potato %"

处理Treatment X1 X2 X3 X4 X5 X6 X7 X12 X13
B1D1 4.97 2.15 0.49 4.54 5.73 2.76 1.77 2.00 1.54
B2D1 4.16 1.72 0.46 3.59 5.22 3.67 1.95 1.90 0.97
B3D1 4.97 3.28 1.02 1.81 3.89 5.77 2.32 1.74 2.56
B4D1 2.56 1.60 1.12 1.86 5.91 3.67 2.38 2.00 0.89
B1D2 2.30 1.03 1.25 3.11 4.88 2.60 1.73 1.92 1.11
B2D2 5.14 1.42 0.58 1.97 5.89 2.90 1.93 2.08 0.92
B3D2 3.76 0.62 2.64 2.52 5.85 2.64 1.78 1.75 2.12
B4D2 4.33 1.89 3.14 2.14 3.76 2.60 1.75 1.79 1.65
B1D3 3.34 3.54 0.96 2.80 3.69 2.60 1.75 1.76 2.18
B2D3 2.66 1.00 0.87 3.00 3.80 2.61 1.74 1.75 0.87
B3D3 2.99 0.68 1.31 1.77 3.68 2.83 1.79 1.76 1.11
B4D3 1.94 1.86 0.58 1.78 3.48 2.60 1.74 1.73 1.22

Table 8

Grey relation analysis of various indicators on sweet potato yield"

X1 (CK) X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
X2 0.705 0.588 0.756 0.903 0.394 0.845 0.432 0.605 0.641 0.500 0.571 0.746
X3 0.561 0.586 0.699 0.412 0.459 0.606 0.445 0.541 0.543 0.865 0.602 0.648
X4 0.779 0.925 0.913 0.760 0.738 0.986 0.941 0.962 0.999 0.871 0.922 0.888
X5 0.465 0.470 0.670 0.979 0.886 0.592 0.360 0.501 0.425 0.359 0.484 0.557
X6 0.871 0.778 0.568 0.768 0.508 0.660 0.624 0.921 0.798 0.565 0.884 0.642
X7 0.747 0.686 0.592 0.467 0.873 0.713 0.471 0.590 0.693 0.889 0.732 0.759
X8 0.804 0.757 0.767 0.621 0.566 0.799 0.483 0.593 0.630 0.525 0.884 0.644
X9 0.563 0.568 0.494 0.601 0.725 0.528 0.634 0.727 0.511 0.553 0.557 0.541
X10 0.652 0.568 0.468 0.678 0.736 0.780 0.479 1.000 0.625 0.661 0.660 0.806
X11 0.797 0.640 0.628 0.929 0.644 0.946 0.542 0.600 0.621 0.727 0.620 0.671
X12 0.441 0.422 0.485 0.530 0.347 0.506 0.335 0.493 0.381 0.388 0.411 0.430
X13 0.492 0.472 0.428 0.415 0.389 0.363 0.387 0.467 0.503 0.460 0.459 0.520
灰色关联度Correlation degree 0.656 0.622 0.622 0.672 0.605 0.694 0.511 0.667 0.614 0.614 0.649 0.654
[1] 李育明. 中国甘薯种质资源遗传多样性分析及高淀粉轮回选择群体改良研究. 成都: 四川农业大学, 2007.
[2] 田欢. 9个食用型甘薯品种块根农艺性状鉴定及其品质关键因子分析. 重庆: 西南大学, 2020.
[3] Divi U K, Krishna P. Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnology, 2009, 26(3):131-136.
[4] 朱纯祥, 董俊涛, 黄成根, 等. 油菜素(芸苔素)内脂在几种作物上的应用效果. 安徽农学通报, 2002(1):43-45.
[5] Filek M, Sieprawska A, Kościelniak J, et al. The role of chloroplasts in the oxidative stress that is induced by zearalenone in wheat plants-The functions of 24-epibrassinolide and selenium in the protective mechanisms. Plant Physiology and Biochemistry, 2019, 137:84-92.
[6] Mujahid H, Wang Z, Mo Y, et al. Influence of exogenous 28- homobrassinolide optimized dosage and edah application on hormone status, grain filling, and maize production. Processes, 2022, 10(6):1118-1118.
[7] Chen Y L, Ge J F, Liu Y, et al. 24-epibrassnolide alleviates the adverse effect of salinity on rice grain yield through enhanced antioxidant enzyme and improved K+/Na+ homeostasis. Agronomy, 2022, 12(10):2499-2499.
[8] 段文学, 汪进丽, 张海燕, 等. 栽插方式和密度对鲜食型甘薯品种干物质积累分配、块根产量及品质的影响. 华北农学报, 2018, 33(4):167-174.
doi: 10.7668/hbnxb.2018.04.024
[9] 李平芳, 王红梅, 张艳丽, 等. 不同密度、氮磷钾配比对甘薯产量和商品率的影响. 中国农学通报, 2021, 37(33):41-49.
doi: 10.11924/j.issn.1000-6850.casb2021-0163
[10] 唐忠厚, 李洪民, 李强, 等. 基于近红外光谱技术预测甘薯块根淀粉与糖类物质含量. 江苏农业学报, 2013, 29(6):1260- 1265.
[11] 闫会, 李强, 张允刚, 等. 基因型和栽插密度对甘薯农艺性状及结薯习性的影响. 西南农业学报, 2017, 30(8) :1739-1745.
[12] 王丽君, 李冬, 申洪涛, 等. 油菜素内酯对干旱胁迫下烤烟幼苗生长生理及光合特性的影响. 西北农林科技大学学报(自然科学版), 2020, 48(11):33-41.
[13] 孙玉珺, 吴玥, 马德志, 等. 外源油菜素内酯对低温胁迫下玉米发芽及幼苗生理特性的影响. 华北农学报, 2019, 34(3):119-128.
[14] 骆炳山. 油菜素内酯对大豆生长及结实性的影响. 植物生理学通讯, 1986(2):14-17.
[15] 郭奇珍. 新型植物激素——油菜素内酯. 植物生理学通讯, 1983(2):7-13.
[16] 刘明, 李洪民, 张爱君, 等. 不同氮肥与密度水平对鲜食甘薯产量和品质的影响. 华北农学报, 2020, 35(1):122-130.
doi: 10.7668/hbnxb.20190278
[17] 宋冠华, 冉梦莲, 冷二露. 24-表油菜素内酯对紫甘薯产量及品质的影响. 现代农业, 2014(9):99-101.
[18] 张小贝, 祝志欣, 南文卓, 等. 2,4-表油菜素内酯(EBR)对菜用甘薯抗寒生理生化的影响. 安徽农业大学学报, 2017, 44(3):525-529.
[19] 刘中华, 许泳清, 邱永祥, 等. 栽培密度对优质鲜食型甘薯农艺性状及产量的影响. 热带作物学报, 2016, 37(8):1452-1457.
[1] Guo Haibin, Zhang Jungang, Wang Wenwen, Xue Zhiwei, Xu Haitao, Feng Xiaoxi, Wang Bingong, Wang Chengye. Response of Photosynthetic Characteristics, Root Growth and Yield of Summer Maize to Subsoiling and Increasing Density in Lime Concretion Black Soil [J]. Crops, 2024, 40(3): 109-118.
[2] Liu Yue, Jia Yonghong, Yu Yuehua, Zhang Jinshan, Wang Runqi, Li Dandan, Shi Shubing. Effects of Nitrogen Fertilizer Management on Growth and Development, Yield and Quality of Peanut in Northern Xinjiang [J]. Crops, 2024, 40(3): 119-126.
[3] Xia Yulan, Wang Dexun, Zhao Yuanyuan, Fan Zhiyong, Li Juan, Wang Ge, Zhao Zhihao, Shi Hongzhi. Effects of Potassium Fertilizer Dosage and Topdressing Period on Chemical Composition, Yield and Quality of Leaves ofBlack Shank-Resistant Tobacco Honghuadajinyuan [J]. Crops, 2024, 40(3): 133-140.
[4] Chen Biwei, Ju Xikai, Sun Yiming, Li Qinghua, Liu Qing, Zeng Lusheng. Effects of Drought in Different Periods on Yield Formation and Starch Gelatinization Characteristics of Starchy Sweet Potato [J]. Crops, 2024, 40(3): 141-147.
[5] Yi Qin, Huang Miao, Yang Guotao, Hu Yungao, Chen Hong, Wang Xuechun. Effects of Combined Application of Organic and Inorganic Fertilizers on Yield and Quality of Rapeseed in Sichuan [J]. Crops, 2024, 40(3): 163-167.
[6] Liu Yajun, Lu Yun, Wang Wenjing, Hu Qiguo, Chu Fengli, Li Zhijie. Effects of Organic Fertilizer and Soil Conditioner on the Growth and Development of Continuous Cropping Sweet Potato and Soil Fertility [J]. Crops, 2024, 40(3): 168-174.
[7] Ou Kunpeng, Wang Xueli, Wang Yan, He Minghui, Huang Liankang, Zheng Debo, Lin Qian. Effects of Different Proportions of Nitrogen, Phosphorus and Potassium on Photosynthetic Characteristics, Yield and Quality of Pueraria lobata var. thomsonii [J]. Crops, 2024, 40(3): 216-222.
[8] Xie Zhangshu, Xie Xuefang, Zhou Chengxuan, Xu Doudou, Li Jiarui, Tu Xiaoju, Liu Aiyu, Li Fei, Gong Yangcang, He Yunxin, Wei Shangzhi, Wu Bibo, Zhou Zhonghua. A New Cotton Seed Balling Technology and Its Influence on Cotton Seedling Emergence, Yield and Quality [J]. Crops, 2024, 40(3): 257-264.
[9] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
[10] Xu Zheli, Zhu Weiqi, Wang Litao, Shi Feng, Wei Zhiying, Wang Lina, Qiu Hongwei, Zhang Xiaoying, Li Huili. Effects of Irrigation and Foliar Nitrogen Application on Yield, Quality and Photosynthetic Characteristics of Late Sowing Wheat [J]. Crops, 2024, 40(2): 139-147.
[11] Li Sijun, Bi Yiming, Hou Jianlin, Wu Wenxin, Deng Xiaoqiang, Jiang Zhimin, Tian Yunong, Hao Xianwei, Zhang Cheng, Zhu Lin, Xia Bin, Deng Xiaohua. Study on the Flue-Curing Processes in the Intensive Curing House Suitable for the Harvesting at One Time of Six Middle Leaves of Paddy-Tobacco [J]. Crops, 2024, 40(2): 158-164.
[12] Xie Jin, Li Jincheng, Liang Zengfa, Huang Hao, Zhang Xi, Gao Renji, Jin Baofeng, Zeng Fandong, Lu Zhiwei, Cai Yixia, Wang Wei. Effects of Ridging Height and Ratio of Organic Fertilizer on Root Growth and Quality of Upper Tobacco Leaves [J]. Crops, 2024, 40(2): 165-171.
[13] Du Qingfu, Shang Lili, Lü Jiahao, Zhang Ruiqing, Yao Jiangang, Qiu Pengfei, Zhao Jianwei, He Shaozhen. Effects of Different Light Intensity on Photosynthetic Characteristics and Flowering of Sweet Potato [J]. Crops, 2024, 40(2): 172-177.
[14] Xie Mengfan, Jia Haijiang, Qu Yuankai, Nong Shiying, Li Junlin, Wang Jie, Liu Liwei, Yan Huifeng. Effects of Planting Density and Nitrogen Fertilizer Application Rate on Leaf Development and Yield of Flue-Cured Tobacco in Baise Tobacco Region [J]. Crops, 2024, 40(2): 189-197.
[15] Chen Lin, Yao Xiaohua, Yao Youhua, Bai Yixiong, Wu Kunlun. Diversity Analysis of Grain Appearance and Quality Traits of Hulless Barley Varieties on the Qinghai-Tibet Plateau [J]. Crops, 2024, 40(2): 213-220.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!