Crops ›› 2025, Vol. 41 ›› Issue (3): 165-171.doi: 10.16035/j.issn.1001-7283.2025.03.022

Previous Articles     Next Articles

Effects of Prohexadione-Calcium and Phosphorus Application Rate on the Growth, Dry Matter Accumulation, and Yield of Winter Wheat

Li Jiahao1(), Jia Yonghong2, Lian Shihao1, Liu Yue1, Yu Shan1, Tian Wenqiang1, Wang Ziqian1, Zhang Jinshan1, Shi Shubing1()   

  1. 1College of Agronomy of Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
    2Qitai County Wheat Experiment Station, Xinjiang Academy of Agricultural Sciences, Qitai 831800, Xinjiang, China
  • Received:2024-04-02 Revised:2024-07-06 Online:2025-06-15 Published:2025-06-03

Abstract:

To study the response of winter wheat to the compound regulation of prohexadione-calcium and phosphorus fertilizer, take Xindong 18 as the material, a two-factor split-zone test design was used, set up foliar spraying of prohexadione-calcium main plot (A1: 300 g/ha, A2: 600 g/ha, A3: 900 g/ha); the amount of phosphorus applied (P2O5) was the subplot (P1: 90 kg/ha, P2: 120 kg/ha, P3: 150 kg/ha, P4: 180 kg/ha). The effects of different doses of prohexadione-calcium and phosphorus application on agronomic traits, relative content of chlorophyll (SPAD value), dry matter accumulation and distribution and yield of winter wheat were studied. The results showed that under the same phosphorus application rate, A3 treatment had a significant inhibitory effect on winter wheat plant height and node length, its leaf area index (LAI), SPAD value, dry matter accumulation, node diameter, and yield were all higher than A1 and A2, and increased by 11.89%-15.60%, 0.26%-12.18% and 3.69%-8.32%, 1.02%-5.15% and 1.29%-4.02%, respectively. At the same dose of prohexadione- calcium, LAI, SPAD value, dry matter accumulation, and plant height and node length were all highest in P3,with the size of P3>P4>P2>P1; the A3P3 treatment produced the most (8120.04 kg/ha). Accordingly, the northern border area can benefit from a moderate dosage of prohexadione-calcium (900 g/ha) and phosphorus treatment (150 kg/ha) to boost yields under this experiment.

Key words: Winter wheat, Prohexadione-calcium, Phosphorus application rate, Growth, Dry matter accumulation and distribution

Table 1

Effects of different concentrations of prohexadione-calcium and phosphorus application rate on LAI of winter wheat"

处理
Treatment
拔节期
Jointing
孕穗期
Booting
开花期
Anthesis
灌浆前期
Early grain-
filling
A1 P1
4.89c 6.14c 5.40c
4.68c
P2
5.11b 6.50b 5.48bc
4.96b
P3
5.19a 6.66a 5.64a
5.16a
P4 5.12b 6.59a 5.55ab 4.99b
平均值Average 5.08c 6.47c 5.52c 4.94c
A2 P1
5.19c 6.74b 5.69a
4.93c
P2
5.24c 6.81ab 5.70a
5.15b
P3 5.55a 6.85a 5.78a
5.40a
P4 5.33b 6.83ab 5.73a
5.30a
平均值Average 5.33b 6.81b 5.73b 5.19b
A3 P1
5.60b 6.87b 5.94c
5.42b
P2
5.61b 6.96b 6.01c
5.43b
P3
5.80a 7.12a 6.52a
5.57a
P4 5.65b 6.74c 6.21b 5.52ab
平均值Average 5.66a 6.92a 6.17a 5.48a
变异来源Source of variation FF-value
A 101.19**
196.65** 584.86** 152.18**
P 37.49** 32.53** 27.06** 33.95**
A×P 3.41* 13.82** 6.85** 3.34*

Fig.1

Effects of different concentrations of prohexadione-calcium and phosphorus application rate on SPAD values of winter wheat"

Table 2

Effects of different concentrations of prohexadione-calcium and phosphorus application rate on dry matter accumulation and partitioning at maturity in winter wheat"

处理
Treatment
干物质积累量
(g/株)
Dry matter
accumulation
(g/plant)
茎+叶鞘
Stem and sheath
叶片
Leaf
颖壳+穗轴
Glume and spike axis
籽粒
Grain
干重(g/株)
Dry weight
(g/plant)
占比
Percentage
(%)
干重(g/株)
Dry weight
(g/plant)
占比
Percentage
(%)
干重(g/株)
Dry weight
(g/plant)
占比
Percentage
(%)
干重(g/株)
Dry weight
(g/plant)
占比
Percentage
(%)
A1 P1 7.62d 2.58b 33.90a 0.76b 9.99a 1.05a 13.40a 3.25c 42.71a
P2 7.81b 2.63ab 33.72a 0.79ab 10.16a 1.04a 13.36a 3.34ab 42.81a
P3 7.90a 2.65a 33.50a 0.82a 10.38a 1.03a 13.29a 3.38a 42.79a
P4 7.70c 2.61ab 33.94a 0.77b 10.00a 1.02a 13.38a 3.29bc 42.73a
A2 P1 7.86d 2.63a 33.46a 0.88a 10.18a 1.07a 13.57a 3.37c 42.92a
P2 8.12b 2.67a 32.92a 0.87a 10.76a 1.08a 13.26a 3.49ab 42.98a
P3 8.19a 2.70a 32.97a 0.83ab 10.69a 1.09a 13.33a 3.53a 43.01a
P4 7.99c 2.66a 33.33a 0.80b 10.35a 1.07a 13.39a 3.43bc 42.93a
A3 P1 8.15d 2.65b 32.47a 0.91b 11.21a 1.08a 13.29a 3.51c 43.07a
P2 8.46b 2.72ab 32.19a 0.99a 11.74a 1.10a 12.96a 3.65ab 43.14a
P3 8.54a 2.73a 31.96a 1.00a 11.71a 1.12a 13.15a 3.69a 43.16a
P4 8.30c 2.68ab 32.25a 0.95ab 11.44a 1.09a 13.17a 3.58bc 43.13a

Table 3

Effects of different concentrations of prohexadione-calcium and phosphorus application rate on the plant height of winter wheat cm"

处理
Treatment
拔节期
Jointing
孕穗期
Booting
灌浆前期
Early grain-
filling
A1 P1 40.98b 71.91c 92.35b
P2 41.13ab 73.08bc 93.52ab
P3 42.61a 75.78a 95.19a
P4 41.76ab 74.09b 94.58a
平均值Average 41.62a 73.71a 93.91a
A2 P1 38.66b 69.10c 91.67b
P2 39.48ab 71.05b 92.99ab
P3 40.84a 74.61a 94.48a
P4 40.74a 73.47a 93.38ab
平均值Average 39.93b 72.06b 93.13a
A3 P1 38.11b 68.16c 89.19c
P2 38.66b 69.78b 90.98bc
P3 40.68a 71.53a 93.46a
P4 39.07ab 70.51ab 92.37ab
平均值Average 39.13c 69.99c 91.50b
变异来源Source of variation FF-value
A 55.50* 269.02** 10.18*
P 5.66* 28.43** 9.15**
A×P 0.31ns 1.10ns 0.25ns

Table 4

Effects of different concentrations of prohexadione-calcium and phosphorus application rate on internode length at maturity in winter wheat cm"

处理
Treatment
穗颈节长
Peduncle length
倒2节长
Penultimate internode length
倒3节长
Antepenultimate internode length
倒4节长
Fourth internode length
A1 P1 32.33a 21.04a 13.87a 12.24a
P2 32.73a 21.31a 13.93a 12.31a
P3 33.21a 21.92a 14.36a 12.77a
P4 33.01a 21.81a 14.14a 12.50a
平均值Average 32.82a 21.52a 14.08a 12.45a
A2 P1 31.06a 20.01a 13.27a 11.43a
P2 31.46a 20.35a 13.39a 11.57a
P3 32.01a 20.54a 13.51a 12.03a
P4 31.95a 20.38a 13.77a 11.69a
平均值Average 31.62b 20.32b 13.49b 11.68b
A3 P1 30.44a 19.23a 12.72a 10.46a
P2 30.74a 19.61a 12.91a 10.69a
P3 31.39a 19.91a 12.97a 11.05a
P4 31.27a 19.84a 13.05a 10.81a
30.96b 19.65b 12.91c 10.75c
变异来源Source of variation FF-value
A 19.57* 12.17* 25.69*
18.87*
P 2.91ns 1.20ns 0.47ns 1.83ns
A×P 0.02ns 0.06ns 0.07ns 0.02ns

Table 5

Effects of different concentrations of prohexadione-calcium and phosphorus application rate on nodal diameter at maturity in winter wheat mm"

处理
Treatment
穗颈节直径
Peduncle internode
diameter
倒2节直径
Penultimate internode
diameter
倒3节直径
Antepenultimate
internode diameter
倒4节直径
Fourth internode
diameter
A1 P1 2.85a 3.86a 3.78a 3.38a
P2 2.91a 3.92a 3.82a 3.45a
P3 2.93a 3.93a 3.83a 3.45a
P4 2.87a 3.89a 3.81a 3.41a
平均值Average 2.89a 3.90b 3.81b 3.42b
A2 P1 2.90a 3.91a
3.81a 3.43a
P2 2.96a 3.96a 3.85a 3.49a
P3 2.97a 3.97a 3.86a 3.50a
P4 2.96a 3.93a 3.83a 3.47a
平均值Average 2.95a 3.94ab 3.84b 3.47ab
A3 P1 2.97a 3.95a 3.86a 3.50a
P2 3.04a 3.98a 3.91a 3.56a
P3 3.07a 4.02a 3.92a 3.57a
P4 3.02a 3.97a 3.88a 3.52a
平均值Average 3.02a 3.98a 3.89a 3.54a
变异来源Source of variation FF-value
A 4.03ns 5.01ns 14.41* 9.01*
P 2.04ns 2.36ns 1.49ns 2.01ns
A×P 0.10ns 0.05ns 0.02ns 0.03ns

Table 6

Effects of different concentrations of prohexadione-calcium and phosphorus application rate on yield and its components of winter wheat"

处理
Treatment
穗数
Spikes
(×104/hm2)
穗粒数
Grains per
spike
千粒重
1000-grain
weight (g)
产量
Yield
(kg/hm2)
A1 P1 465.67b 38.90b 39.76b 7103.57c
P2 474.33b 40.27ab 41.49ab 7591.41b
P3 494.67a 41.20a 41.84a 7883.37a
P4 488.67a 39.73ab 40.63ab 7567.64b
平均值Average 480.83c 40.30b 40.93a 7536.50b
A2 P1 510.33c 39.80a 40.47a 7250.04c
P2 526.67b 40.80a 41.85a 7673.37b
P3 549.67a 41.43a 42.22a 7900.04a
P4 511.67bc 40.53a 41.27a 7603.37b
平均值Average 524.58b 40.64ab 41.45a 7606.71ab
A3 P1 529.33c 40.67a 40.76b 7343.37c
P2 549.67b 41.73a 41.91ab 7896.71b
P3 567.33a 42.13a 43.73a 8120.04a
P4 536.67bc 41.13a 42.33ab 7850.04b
平均值Average 545.75a 40.67a 42.18a 7802.54a
变异来源
Source of variation
FF-value
A 108.30** 4.93ns 1.11ns 6.44ns
P 16.53** 3.70* 3.26* 153.65**
A×P 1.56ns 0.08ns 0.19ns 0.85ns
[1] 陈俊华, 郭世保, 徐雪松, 等. 5%调环酸钙泡腾颗粒剂对小麦的调控作用. 江苏农业科学, 2016, 44(10):143-146.
[2] Medjdoub R J A. Inhibition of vegetative growth in red apple cultivars using prohexadione-calcium. The Journal of Horticultural Science Biotechnology, 2005, 80(2):263-271.
[3] Vavilala D T, Reddy S, Sachchidanand, et al. Prohexadione, a plant growth regulator, inhibits histone lysine demethylases and modulates epigenetics. Toxicology Reports, 2014,1:1152-1161.
[4] Paulson G S, Hull L A, Biddinger D J. Effect of a plant growth regulator prohexadione-calcium on insect pests of apple and pear. Journal of Economic Entomology, 2005(2):423-431.
pmid: 15889734
[5] 李瑞, 蒋欣梅, 刘汉兵, 等. 不同浓度调环酸钙对黄瓜幼苗徒长防控的影响. 中国蔬菜, 2020(3):33-37.
[6] 郭世保, 陈俊华, 徐雪松, 等. 调环酸钙对小麦生长的调控作用和安全性. 广东农业科学, 2016, 43(3):106-110.
[7] 戚瑞生, 党廷辉, 杨绍琼, 等. 长期定位施肥对土壤磷素吸持特性与淋失突变点影响的研究. 土壤通报, 2012, 43(5):1187-1194.
[8] 岳寿松, 于振文. 磷对冬小麦后期生长及产量的影响. 山东农业科学, 1994(1):13-15.
[9] 邢丹, 李淑文, 夏博, 等. 磷肥施用对冬小麦产量及土壤氮素利用的影响. 应用生态学报, 2015, 26(2):437-442.
[10] 王旭东, 于振文. 施磷对小麦产量和品质的影响. 山东农业科学, 2003(6):35-36.
[11] 张丰转, 姚军, 杨卫斌. 5%调环酸钙在水稻上的应用效果. 现代化农业, 2013(11):26-27.
[12] 杜连涛. 施用不同剂量调环酸钙对丘陵地区花生生理特性及产量的影响. 安徽农业大学学报, 2013, 40(1):139-143.
[13] 郭兴强, 于永静, 吕润海, 等. 调环酸钙―青鲜素复配剂对甜高粱节间生长的调控效应. 中国农业大学学报, 2009, 14(5):29-34.
[14] 杨卫君, 贾永红, 石书兵, 等. 播期和密度对春小麦品种新春26号生长及产量的影响. 麦类作物学报, 2016, 36(7):913-918.
[15] 余明龙, 左官强, 李瑶, 等. 调环酸钙对盐碱胁迫下大豆幼苗光合特性和保护酶活性的调节作用. 中国油料作物学报, 2019, 41(5):741-749.
doi: 10.19802/j.issn.1007-9084.2019025
[16] Zhou B, Qiao M, Wang Z Q. Effects of a long-term located fertilization on soil quality of grey desert soil. Chinese Journal of Eco-Agriculture, 2007, 15(2):33-36.
[17] 曾广伟, 林琪, 姜雯, 等. 不同土壤水分条件下施磷量对小麦干物质积累及耗水规律的影响. 麦类作物学报, 2009, 29(5):849-854.
[18] 周毅, 汪建飞, 邢素芝, 等. 解磷微生物有机肥对冬小麦产量形成的影响. 麦类作物学报, 2013, 33(3):526-529.
[19] 王瑜, 李增嘉, 宁堂原, 等. 水、磷对冬小麦旗叶特性的影响. 青岛农业大学学报(自然科学版), 2008, 25(3):177-183.
[20] 张忠学, 于贵瑞. 不同灌溉处理对冬小麦生长及水分利用效率的影响. 灌溉排水学报, 2003, 22(2):1-4.
[21] 王红光, 于振文, 张永丽, 等. 测墒补灌对小麦光合特性和干物质积累与分配的影响. 应用生态学报, 2011, 22(10):2495-2503.
[22] 刘冲, 贾永红, 张金汕, 等. 施磷量对不同播种方式下冬小麦干物质转运及养分吸收利用的影响. 植物营养与肥料学报, 2020, 26(5):975-986.
[23] 耿玉辉, 曹国军, 叶青, 等. 磷肥不同施用方式对土壤速效磷及春玉米磷素吸收和产量的影响. 华南农业大学学报, 2013, 34(4):470-474.
[24] 薛晓敏, 林开创. 5%调环酸钙泡腾颗粒剂对小麦生长及产量影响. 河南农业, 2022(1):40-41.
[25] 赵东生. 调环酸钙调控水稻小麦生长的研究. 郑州:河南农业大学, 2011.
[26] 刘桂荣, 肖慧, 陈月平. 磷肥对小麦生长发育及其产量的影响. 农业工程技术, 2018, 38(29):14,17.
[27] 郭世保, 徐雪松, 王朝阳, 等. 调环酸钙对小麦群体性状和产量的调控作用. 湖北农业科学, 2016, 55(7):1706-1709.
[28] 李裕元, 郭永杰, 邵明安. 施肥对丘陵旱地冬小麦生长发育和水分利用的影响. 干旱地区农业研究, 2000(1):15-21.
[29] 郑彩霞, 张富仓, 张志亮, 等. 限量灌水和施磷对冬小麦养分吸收及利用的影响. 干旱地区农业研究, 2014, 32(3):102-107.
[30] 陆梅, 孙敏, 高志强, 等. 不同施磷水平对旱地小麦产量及其构成要素的影响. 灌溉排水学报, 2018, 37(7):13-19.
[31] Nie Z J, Li S Y, Hu C X, et al. Effects of molybdenum and phosphorus fertilizers on cold resistance in winter wheat. Journal of Plant Nutrition, 2015, 38(5):808-820.
[32] 张少民, 郝明德, 柳燕兰. 黄土区长期施用磷肥对冬小麦产量、吸氮特性及土壤肥力的影响. 西北农林科技大学学报(自然科学版), 2007, 35(7):159-163.
[1] Liang Hui, Zhang Jianxin, Xue Lihua, Jia Keke. Effects of Drip Irrigation Amount on Root Growth and Yield of Xinnongdou 2 under the Condition of the Postpone of Water and Nitrogen [J]. Crops, 2025, 41(3): 233-240.
[2] Zhao Lingling, Li Guifang, Cheng Chu, Zheng Mingjie, Hu Min, Zhu Jianfeng, Shen Ayi, Shen Aga, Wang Junzhen, Shao Meihong. Preliminary Report on Introduction Experiment of New Buckwheat Varieties in Zhejiang Province [J]. Crops, 2025, 41(2): 86-92.
[3] Lei Yun, Liu Yueyan, Wang Jianjian. Effects of CO2 Enrichment and Phosphorus Level on Seedling Growth and Nutrient Element Absorption of Capsicum anmuum L. [J]. Crops, 2025, 41(2): 189-195.
[4] Li Qibiao, Zhang Xuejiao, Xu Lei, Hu Yonghua, Xu Zhijun. Effects of Biochar Combined with Bacillus on Soil Nutrients and Bacterial Communities in the Rhizosphere of Pakchoi [J]. Crops, 2025, 41(2): 207-214.
[5] Wu Lu, Zhang Hao, Yang Feiyun, Guo Erjing, Si Linlin, Cao Kai, Cheng Chen. Adaptability Assessment of WOFOST Model for Simulating Rice Growth and Development in the Jianghuai Region [J]. Crops, 2025, 41(2): 215-221.
[6] Li Yunxia, Yang Jiashuo, Li Yangyang, Xiang Shipeng, Yu Jinlong, Li Bin, Zheng Weiwei, Liu Lu. Effects of Different Transplanting Periods on the Growth, Development and Yield Quality of Flue-Cured Tobacco in Tobacco-Rice Rotation Area [J]. Crops, 2025, 41(2): 222-227.
[7] Lu Yu, Zhang Yanyan, Chen Haitao, Li Manxin, Bai Runʼe, Lei Caiyan. Effects of Exogenous Spermidine on the Interaction between Bemisia tabaci and Cucumber [J]. Crops, 2025, 41(2): 256-264.
[8] Yang Ruping, Jia Zhen, Wei Ying, Wei Yechou, Wang Liming, Chen Guangrong, Zhang Guohong, Song Wenwen. The Relationship between the Growth Period Traits of Soybean Varieties from Various Regions of Gansu and Meteorological Factors as well as Agronomic Traits [J]. Crops, 2025, 41(1): 123-132.
[9] Jing Maoya, Zhang Ziyu, Zhang Meng, He Jiamin, Yan Fanfan, Gao Yanmei, Zhang Yongqing. Effects of Seed Soaking with Salicylic Acid on Seed Germination and Seedling Growth of Quinoa under Salt Stress [J]. Crops, 2025, 41(1): 194-201.
[10] Zhang Baolong, He Jun, Zhang Yi, Tang Chi, Zhang Hongtao, Liao Wei, Li Fei. Effects of Slow-Release Fertilizers on Rice Growth Characteristics, Yield and Dry Matter Accumulation [J]. Crops, 2025, 41(1): 214-219.
[11] Hou Saisai, Li Chang, Li Qingyun, Wang Xinxin. Study on Strategies of Growth and Phosphorus Uptake of Chinese Cabbage at Different Phosphorus Supply Levels [J]. Crops, 2025, 41(1): 220-226.
[12] Yang Dandan, Han Xue, Kong Xinxin, Zhao Guoxuan, Su Yazhong, Zhao Pengfei, Jin Jianmeng, Zhao Guojian. Identification of Osmotic Stress Resistance and Analysis of Related Agronomic Traits of 71 Winter Wheat Seedlings [J]. Crops, 2025, 41(1): 243-249.
[13] Wang An, Chen Zhanxu, Kong Jingxu, Wu Siyuan, He Shaowei, Zhang Jialing, Wan Wei. Identification Method of Plant Growth Stages Based on Improved ResNet18 and Realization of Intelligent Plant Lighting Supplement [J]. Crops, 2025, 41(1): 250-259.
[14] Li Fei, Bian Shaofeng, Xu Chen, Zhao Hongxiang, Song Hanglin, Wang Fuchen, Zhuang Yan. Effects of Ridge Side Cultivation on Maize Physiological Characteristics, Growth and Development in Sloping Farmland [J]. Crops, 2024, 40(6): 120-125.
[15] E Lifeng, Xu Jinchong, Chen Xiubin, Quan Jianhua, Hua Jun, Yin Lijuan, Wang Shunqi, Zhao Wenqin. Effects of Exogenous Silicon on Seed Germination and Physiological Characteristics of Brassica pekinensis under Salt Stress [J]. Crops, 2024, 40(6): 212-217.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!