Crops ›› 2024, Vol. 40 ›› Issue (6): 212-217.doi: 10.16035/j.issn.1001-7283.2024.06.028

Previous Articles     Next Articles

Effects of Exogenous Silicon on Seed Germination and Physiological Characteristics of Brassica pekinensis under Salt Stress

E Lifeng1,2(), Xu Jinchong1, Chen Xiubin1,2, Quan Jianhua1,2, Hua Jun3, Yin Lijuan4, Wang Shunqi4, Zhao Wenqin5   

  1. 1College of Agriculture and Ecological Engineering, Hexi University, Zhangye 734000, Gansu, China
    2Hexi Corridor Precision Facility Horticulture Engineering and Technology Research Center, Hexi University, Zhangye 734000, Gansu, China
    3Zhangye Economic Crops Technical Extension Station, Zhangye 734000, Gansu, China
    4Linze County Agricultural Technology Extension Center, Linze 734200, Gansu, China
    5Gansu Huamei Agricultural Science and Technology Company Limited, Zhangye 734000, Gansu, China
  • Received:2024-03-19 Revised:2024-05-12 Online:2024-12-15 Published:2024-12-05

Abstract:

In order to explore the effects of different concentrations of exogenous silicon on seed germination and seedling physiological characteristics of Brassica pekinensis under salt stress, the variety “Huanai B1102 Chunyuhuang” was used as the test material, a single-factor completely randomized block design was conducted. Under 85.55 mmol/L NaCl salt stress, six treatments were set up: CK1 (distilled water), CK2 (NaCl), A1 (NaCl+ 0.5 mmol/L Si), A2 (NaCl+1.0 mmol/L Si), A3 (NaCl+2.0 mmol/L Si), and A4 (NaCl+4.0 mmol/L Si), each treatment was repeated three times. The changes of seed germination, seedling growth index and physiological activity were determined. The results showed that different concentrations of exogenous silicon could effectively alleviate the damage caused by salt stress to the seeds and seedlings of Brassica pekinensis. When the concentration of silicon was 1.0 mmol/L, the germination rate, germination potential, germination index and vigor index of Brassica pekinensis seeds were significantly increased. At the same time, the plant height, stem diameter, leaf area, root volume and chlorophyll content of Brassica pekinensis seedlings also increased significantly, the activity of peroxidase in leaves increased, and the content of malondialdehyde decreased. Exogenous silicon could effectively regulate the inhibition of salt stress on seed germination and seedling growth of “Huanai B1102 Chunyuhuang”, and the best concentration of silicon to alleviate salt stress was 1.0 mmol/L.

Key words: Brassica pekinensis, Exogenous silicon, Salt stress, Seed germination, Seedling growth

Table 1

Effects of different treatments on germination rate, germination potential, germination index and vigor index of Brassica pekinensis seeds"

处理
Treatment
发芽率
Germination rate (%)
发芽势
Germination potential (%)
发芽指数
Germination index
活力指数
Vigor index
CK1 96.67±1.76a 68.67±0.67a 41.95±0.93a 2.80±0.14a
CK2 86.67±1.76c 39.33±3.53c 31.74±1.36c 1.19±0.05c
A1 92.67±1.76ab 42.00±1.15bc 34.14±0.87bc 1.93±0.22b
A2 94.00±1.15ab 46.67±0.67b 35.66±0.49b 2.28±0.10b
A3 93.33±1.76ab 44.67±0.67bc 35.14±0.38b 1.96±0.08b
A4 89.33±1.76c 41.33±1.33bc 33.90±0.14bc 1.41±0.02c

Table 2

Effects of different treatments on plant height, stem diameter, leaf area and fresh weight of Brassica pekinensis seedlings"

处理Treatment 株高Plant height (cm) 茎粗Stem diameter (mm) 叶面积Leaf area (cm2) 鲜重Fresh weight (g)
CK1 16.79±0.53a 4.13±0.19a 126.41±1.62a 14.33±1.18a
CK2 11.70±0.99bc 2.63±0.12b 63.86±3.60c 9.53±0.16c
A1 13.28±0.40b 3.60±0.15a 83.78±3.06c 9.46±0.25c
A2 16.64±0.56a 3.77±0.18a 111.62±2.31b 11.06±0.41bc
A3 12.70±0.40b 3.57±0.24a 60.89±1.98d 11.90±0.64b
A4 10.25±0.35c 2.80±0.20b 60.28±3.57d 9.88±0.46c

Table 3

Effects of different treatments on total root length, root surface area, root volume and root tip number of Brassica pekinensis seedlings"

处理Treatment 根系总长Total root length (cm) 根系表面积Root surface area (cm2) 根系体积Root volume (cm3) 根尖数Number of root tips
CK1 135.65±20.40a 353.98±9.55a 49.31±15.11a 135.00±20.31a
CK2 73.42±13.75c 175.53±13.74c 28.08±7.96a 38.67±4.91bc
A1 121.01±4.46ab 264.19±7.16b 36.21±8.33a 67.00±0.00bc
A2 135.34±13.97a 352.86±22.93a 49.04±13.99a 148.33±12.02a
A3 83.72±4.65bc 241.70±14.33b 39.23±7.33a 69.33±11.20b
A4 109.59±10.29abc 150.04±15.25c 25.99±9.37a 32.00±1.00c

Fig.1

Effects of different treatments on the morphology and root system of Brassica pekinensis seedlings"

Table 4

Effects of different treatments on contents of chlorophyll a, chlorophyll b, carotenoids and total chlorophyll (a+b) of Brassica pekinensis leaves mg/g"

处理
Treatment
叶绿素a
Chlorophyll a
叶绿素b
Chlorophyll b
类胡萝卜素
Carotenoids
叶绿素(a+b)
Chlorophyll (a+b)
CK1 9.13±0.06a 5.78±0.11a 1.26±0.03a 14.91±0.16a
CK2 4.02±0.07c 1.66±0.11c 0.93±0.02b 5.67±0.18c
A1 5.81±0.06b 3.91±0.07b 0.68±0.01bc 9.72±0.13b
A2 5.66±0.05b 4.13±0.69b 0.64±0.20c 9.79±0.73b
A3 3.94±0.05c 1.77±0.09c 0.92±0.02b 5.72±0.14c
A4 3.03±0.08d 1.81±0.19c 0.54±0.04c 4.84±0.27c

Fig.2

Effects of different treatments on POD activity and MDA content of Brassica pekinensis seedlings Different lowercase letters indicate significant difference at the P < 0.05 level."

[1] 杨兵丽. 不同氮素形态及配比对娃娃菜光合特性和根系生理的影响. 兰州:甘肃农业大学, 2015.
[2] Qiao Y L, Tie J Z, Wang X H, et al. Comprehensive evaluation on effect of planting and breeding waste composts on the yield, nutrient utilization, and soil environment of baby cabbage. Journal of Environmental Management, 2023, 341:117941.
[3] Kitamura Y, Yano T, Honna T, et al. Causes of farmland salinization and remedial measures in the Aral Sea basin-Research on water management to prevent secondary salinization in rice-based cropping system in arid land. Agricultural Water Management, 2006, 85(1/2):1-14.
[4] 朱建峰, 崔振荣, 吴春红, 等. 我国盐碱地绿化研究进展与展望. 世界林业研究, 2018, 31(4):6.
[5] 赵跃锋, 陈昆. 盐胁迫对茄子光合特性、叶绿素荧光及保护酶活性的影响. 山西农业科学, 2018, 46(11):1797-1799,1906.
[6] 王中玉. NaCl胁迫对西瓜幼苗叶绿素荧光、光合特性、渗透调节及酶活性的影响. 山西农业科学, 2020, 48(12):1909-1912.
[7] Muhammad J. Protective effect of potassium application on NaCl induced stress in tomato (Lycopersicon esculentum L.) genotypes. Journal of Plant Nutrition, 2020, 43(13):1-11.
[8] 黄荣雁, 路程伟, 许嵘, 等. 盐碱胁迫对‘冬红’花楸生长、生理及光合特性的影响. 草地学报, 2024, 32(2):480-488.
doi: 10.11733/j.issn.1007-0435.2024.02.015
[9] 董睿潇, 王永庆, 王鑫博, 等. 盐胁迫对食用型向日葵现蕾期叶片光合性能与冠层结构的影响. 中国生态农业学报(中英文), 2024, 32(1):141-152.
[10] Liu B, Soundararajan P, Manivannan A. Mechanisms of silicon- mediated amelioration of salt stress in plants. Plants, 2019, 8(9):307.
[11] Debona D, Rodrigues F A, Datnoff L E, et al. Siliconʼs role in abiotic and biotic plant stresses. Annual Review of Phytopathology, 2017, 55:85-107.
[12] Guntzer F, Keller C, Meunier J D. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 2012, 32:201-213.
[13] Waqar I, Muhammad T, Farghama K, et al. Silicon-mediated plant defense against pathogens and insect pests. Pesticide Biochemistry and Physiology, 2020, 168:104641.
doi: 10.1016/j.pestbp.2020.104641 pmid: 32711774
[14] 朱永兴, 夏雨晨, 刘乐承, 等. 外源硅对植物抗盐性影响的研究进展. 植物营养与肥料学报, 2019, 25(3):498-509.
[15] 孟建, 崔栗, 韩江伟, 等. 设施土壤硅素水平和蔬菜施硅效应研究进展. 安徽农学通报, 2013, 19(17):63-66.
[16] López-Pérez M C, Juárez-Maldonado A, Benavides-Mendoza A. Dynamic modeling of silicon bioavailability, uptake, transport, and accumulation: applicability in improving the nutritional quality of tomato. Frontiers in Plant Science, 2018, 9:647.
doi: 10.3389/fpls.2018.00647 pmid: 29868098
[17] 翟江, 高原, 张晓伟, 等. 硅钙对日光温室黄瓜光合作用及产量和品质的影响. 园艺学报, 2019, 46(4):701-713.
doi: 10.16420/j.issn.0513-353x.2018-0687
[18] Lang Y C, Chen Q, Liu Q, et al. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 2003, 160(10):1157-1164.
[19] 解植彩, 罗栋, 张文晋, 等. 硅对盐胁迫下甘草叶片显微结构的影响. 中药材, 2016, 39(12):2698-2701.
[20] 房江育, 王贺, 张福锁. 硅对盐胁迫烟草悬浮细胞的影响. 作物学报, 2003, 29(4):610-614.
[21] 崔云浩, 梁祎, 王军娥, 等. 纳米硅对盐胁迫下甜椒幼苗生长及抗氧化特性的影响. 山西农业科学, 2021, 49(10):1162- 1165.
[22] Kolima P C, Dilier O V, Alexander C H, et al. Silicon mitigates the negative impacts of salt stress in soybean plants. Journal of the Science of Food and Agriculture, 2023, 103(9):4360-4370.
[23] Lamsaadi N, El M A, Irouane Z, et al. Beneficial role of exogenous silicon on yield, antioxidant systems, osmoregulation and oxidative stress in fenugreek (Trigonella foenum-graecum L.) under salinity stress. Silicon, 2022, 15(1):547-561.
[24] 王映霞. 外源硅对盐胁迫下甜瓜种子萌发的影响. 农业科技与信息, 2021(21):48-50.
[25] 陈罡, 樊平声, 冯伟民, 等. 外源硅对盐胁迫下黄瓜幼苗生长和光合荧光特性的影响. 江苏农业学报, 2014, 30(6):1402- 1409.
[26] 李峰, 栾舒雅. 水杨酸对盐胁迫下大白菜种子萌发和幼苗生长发育的影响. 辽宁师专学报, 2013, 15(4):96-98.
[27] 胡晋. 种子生活力测定原理和方法. 北京: 中国农业出版社, 2009.
[28] 蔡淑芳, 吴宝意, 廖水兰, 等. 基于光温效应的温室小白菜农艺指标动态模拟. 福建农业学报, 2020, 35(6):611-617.
[29] Heath R L, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochemistry Biophysics, 1968, 125(1):189-198.
[30] 李合生, 孙群, 赵世杰, 等. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[31] 胡宗英, 张红香, 孙泽威. 盐碱胁迫对农牧作物种子萌发的影响研究进展. 中国种业, 2014(5):21-23.
[32] 于世河, 郑颖, 孟凡金, 等. 盐碱胁迫对科罗拉多蓝杉种子萌发及幼苗生长的影响. 种子, 2022, 41(11):31-36,53.
[33] 潘凌云, 马家冀, 李建民, 等. 植物盐胁迫应答转录因子的研究进展. 生物工程学报, 2022, 38(1):50-65.
[34] 秦曼丽, 胡绪峰, 刘德麒, 等. 硅对盐胁迫下黄瓜生长和多胺代谢的影响. 植物生理学报, 2022, 58(6):1077-1091.
[35] 高伟, 席克勇, 尹军良, 等. 外源SiNPs对盐胁迫下生姜幼苗生长和生理特性的影响. 西北农林科技大学学报(自然科学版), 2023, 51(9):109-118.
[36] 武仲兰, 夏书珍, 何天香, 等. 外源硅对盐胁迫下红豆种子萌发及幼苗生长的影响. 德州学院学报, 2019, 35(6):34-36,51.
[37] 李娟, 王丽慧, 王莹, 等. 盐胁迫对牧草型菊苣种子萌发及幼苗生长的影响. 种子, 2022, 41(11):119-124.
[38] 张鑫月, 翟玉莹. 不同胁迫下硅对植物的作用及发展前景. 现代园艺, 2024, 47(1):58-59,64.
[39] 樊哲仁, 王晓东, 唐琳. 硅对盐胁迫下麻疯树种子萌发及幼苗生长的影响. 中国油料作物学报, 2010, 32(2):217-221.
[1] Li Feng, Gao Hongyun, Zhang Chong, Zhang Baoying, Ma Jianfu, Guo Na, Bai Wei, Fang Aiguo, Yang Zhimin, Li Yuan. Effects of Salt Stress on Growth and Physiological Indexes of Oat [J]. Crops, 2024, 40(6): 140-146.
[2] Zhang Xuli, Wang Ruijun, Xi Xiaoqian, Feng Xuejin, Li Hong. Effects of Drought Stress and Rehydration on Growth, Physiological Characteristics and Accumulation of Secondary Metabolites in Astragalus Mongholicus Seedlings [J]. Crops, 2024, 40(5): 204-211.
[3] Wang Fugui, Zou Runhou, Gao Julin, Wang Zhen, Cheng Zhipeng, Hao Qi, Zhang Yuezhong, Wang Zhigang. Effects of Straw Returning Methods on Soil Water and Heat and Seedling Growth and Yield of Spring Maize in Eastern Region of Inner Mongolia [J]. Crops, 2024, 40(4): 223-231.
[4] Zhang Ziyi, Wang Xuehu, Yuan Ying, Shen Zhifeng. Effects of Humic Acid Suspension Agent on Seed Germination and Seedling Growth of Wheat under NaCl Stress [J]. Crops, 2024, 40(4): 263-268.
[5] Gu Huaiying, Hu Shiqin, Zhao Qing, Liu Changhua, Meng Lijun. The Progress on Enhancing Salt Tolerance of Rice by Rhizosphere Microorganisms [J]. Crops, 2024, 40(4): 8-13.
[6] Lü Baolian, Yang Yuxin, Cui Licao, Shi Feng, Ma Liang, Kong Xiuying, Zhang Lichao, Ni Zhiyong. Identification of bHLH Family Transcription Factors of Wheat and Expression Analysis under Salt Stress [J]. Crops, 2024, 40(1): 65-72.
[7] Yang Hongwei, Zhang Liying, Li Xiaohui. Research on the Moisture Content Variation and Influence to Rice Seed Germination under Salt and Alkali Stress by Low Field NMR [J]. Crops, 2023, 39(4): 253-259.
[8] Xu Xuewen, Wang Xingpeng, Wang Hongbo, Li Guohui, Tang Maosong, Cao Zhenxi. Effects of Salicylic Acid Application on the Growth and Physiological Characteristics of Cotton Seedlings under Salt Stress [J]. Crops, 2023, 39(3): 188-194.
[9] Luan Jinhua, Song Xinyang, Wang Lei, Sun Lili, Cheng Yanshuang, Dong Hao, Zhang Jia, Cheng Xiaoyi, Xu Hai. Differences Research in Salt Tolerance of New Rice Lines at Seedling Stage in Liaoning [J]. Crops, 2023, 39(3): 20-26.
[10] He Shuiling, Zhao Xia, Wu Mingqi, Wang Dongsheng. Effects of Exogenous Nitric Oxide and Hydrogen Sulfide on the Germination of Foxtail Millet Seeds [J]. Crops, 2023, 39(2): 138-144.
[11] Gu Yibiao, Yan Jiaqian, Xue Zhangyi, Shu Chenchen, Zhang Weiyang, Zhang Hao, Liu Lijun, Wang Zhiqin, Zhou Zhenling, Xu Dayong, Yang Jianchang, Gu Junfei. Different Responses of Roots of Rice Varieties to Salt Stress and the Underlying Mechanisms [J]. Crops, 2023, 39(2): 67-76.
[12] Zhai Caijiao, Zhang Jiao, Cui Shiyou, Chen Pengjun, Han Jijun. Effects of Slow/Controlled Release Fertilizer Application on Growth, Yield and Quality of Rice under Salt Stress [J]. Crops, 2023, 39(1): 143-151.
[13] Wen Danni, Bao Lingran, Liu Mengmeng, Shen Bo. Transcriptome Analysis of OsWD40 Overexpression Rice Roots in Response to Salt Stress [J]. Crops, 2022, 38(6): 42-53.
[14] Wang Jinxiang, Wang Yanzhi, Xing Lixuan, Liu Jianxia, Wang Runmei. Effects of GA3 on Root Growth and Osmotic Regulation of Lübaonuo Broomcorn Millet Seedlings under Salt Stress [J]. Crops, 2022, 38(6): 98-104.
[15] Wang Hanxiang, Li Guangcun, Xu Jianfei, Wang Wanxing, Jin Liping. Advances in Research on Salt Tolerance Mechanism of Plants [J]. Crops, 2022, 38(5): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!