Crops ›› 2025, Vol. 41 ›› Issue (3): 172-177.doi: 10.16035/j.issn.1001-7283.2025.03.023

Previous Articles     Next Articles

Effects of Nitrogen Fertilizer and Promoting Rot Bacteria Fertilizer on Decomposition Effect of Returning Rice Straw to Field and Yield in Cold Regions

Cao Zhengnan1,2(), Zhao Zhendong1, Hu Bo1, Yu Han1, Ning Xiaohai1, Zhao Zeqiang1, Cao Liyong1,2()   

  1. 1China National Rice Research Institute, Hangzhou 310006, Zhejiang, China
    2Baoqing Northern Rice Research Center, Baoqing 155600, Heilongjiang, China
  • Received:2024-02-18 Revised:2024-03-14 Online:2025-06-15 Published:2025-06-03

Abstract:

A field experiment was conducted to examine the effects of nitrogen fertilizer and rot bacteria fertilizer on the decomposition effect of rice straws, dry matter accumulation and yield of rice with total return of rice straws to the field in cold regions. The results showed that, compared with the control, the spraying promoting rot bacteria fertilizer significantly improved the root dry matter accumulation and root-shoot ratio, slowed down the inhibition of root growth and development caused by straw returning in the early stage of rice growth, and the 15% nitrogen reduction significantly increased the root dry matter accumulation in the mature period compared with the conventional nitrogen treatment. The spraying promoting rot bacteria fertilizer also significantly improved the straw decomposition rate, with the highest cumulative decomposition rate reaching 72.35% in the treatment of 15% nitrogen reduction after 120 days, which increased the release of straw nutrients and effectively alleviated the effect of nitrogen fertilizer reduction on the dry matter accumulation and yield in the aboveground parts. Compared with conventional nitrogen application, 15% nitrogen reduction treatment significantly increased the amount of dry matter accumulation in the mature period by 4.1%; the 30% nitrogen reduction treatment didn’t significant reduced yield. This study showed that the appling promoting rot bacteria fertilizer could improve the dry matter accumulation in both aboveground and underground parts, optimize the root-shoot ratio, improve the decomposition rate of straws, release more nutrients to meet the nutritional growth of rice in the later stage, and promote the efficient utilization of straws and the high yield of rice.

Key words: Rice in cold region, Straw returning to field, Decomposition rate, Nitrogen fertilizer, Promoting rot bacteria fertilizer, Yield

Table 1

Cumulative decomposition rate of rice straw during the maturation process %"

处理
Treatment
累积腐解率Cumulative decomposition rate
30 d 60 d 90 d 120 d
T1 22.35±0.90c 37.32±0.89c 47.36±1.35d 52.33±1.37d
T2 28.02±0.86a 46.57±2.36a 60.55±1.08a 72.35±1.79a
T3 27.12±1.17a 44.14±0.52a 56.80±1.39b 66.68±1.29b
T4 24.27±0.32b 41.08±0.71b 51.93±1.85c 61.70±0.78c
CK 20.35±0.90d 33.07±1.45d 41.48±0.82e 44.25±0.96e

Fig.1

Decomposition rate of rice straw in different periods"

Table 2

Dry matter accumulation and its ratio in each organ of rice at main growth stages"

生育时期
Growth
stage
处理
Treatment
茎鞘Stem-sheath 叶片Leaf 穗Panicle 总干物质
积累量
Total dry matter
(kg/hm2)
干物质积累量
Dry matter
accumulation (kg/hm2)
比例
Ratio
(%)
干物质积累量
Dry matter
accumulation (kg/hm2)
比例
Ratio
(%)
干物质积累量
Dry matter
accumulation (kg/hm2)
比例
Ratio
(%)
分蘖期
Tillering
T1 2537.81a 54.34ab 2131.30a 45.66bc 4669.10a
T2 2420.38ab 53.59bc 2095.11a 46.41ab 4515.49a
T3 2332.50b 53.70bc 2011.12b 46.30ab 4343.62b
T4 2087.75c 52.79c 1866.91c 47.21a 3954.66c
CK 2011.01c 55.12a 1637.34d 44.88c 3648.35d
齐穗期
Heading
T1 6596.52a 55.27a 3296.72a 27.62b 2042.04ab 17.11ab 11 935.28a
T2 6524.28a 54.48a 3295.60a 27.52b 2155.72a 18.00a 11 975.60a
T3 6398.28a 55.96a 3182.20a 27.86b 1851.64bc 16.18bc 11 432.12a
T4 5470.08b 55.25a 2751.06b 27.80b 1678.32c 16.95ab 9899.40b
CK 3709.84c 55.37a 1963.36c 29.31a 1027.01d 15.32c 6700.21c
成熟期
Maturity
T1 5247.94ab 27.32a 2707.31a 14.09c 11 255.23ab 58.60a 19 210.47b
T2 5307.75a 27.03a 2758.42a 14.05c 11 568.72a 58.93a 19 634.88a
T3 4964.57b 26.79a 2646.96ab 14.29c 10 918.81b 58.92a 18 530.33b
T4 4446.48c 28.02a 2445.43b 15.39b 8989.25c 56.59b 15 881.15c
CK 3149.39d 28.37a 1848.45c 16.64a 6101.51d 54.99c 11 099.35d

Table 3

Root dry matter accumulation and root-shoot ratio of rice at main growth stages"

处理
Treatment
根系干物质积累量Root dry matter accumulation (kg/hm2) 根冠比Root-shoot ratio
分蘖期Tillering 齐穗期Heading 成熟期Maturity 分蘖期Tillering 齐穗期Heading 成熟期Maturity
T1 1139.89b 2177.88bc 1470.26bc 0.24c 0.18d 0.08c
T2 1292.46a 2396.17a 1682.60a 0.29ab 0.20cd 0.09bc
T3 1249.04ab 2288.33ab 1569.60ab 0.29ab 0.21bc 0.08bc
T4 1213.87ab 2128.87c 1423.61c 0.31c 0.22bc 0.09b
CK 965.73c 1625.32d 1282.47d 0.27bc 0.24a 0.12a

Table 4

Grain yield and yield components of rice in different treatments"

处理
Treatment
有效穗数
Number of effective panicles (×104/hm2)
千粒重
1000-grain weight (g)
每穗粒数
Grains per panicle
结实率
Seed-setting rate (%)
产量
Yield (kg/hm2)
T1 479.64±14.33a 26.12±0.17a 89.38±3.27ab 94.46±1.08b 9396.83±158.57b
T2 483.84±14.03a 26.10±0.06a 90.93±2.66a 96.69±1.27a 9785.73±148.67a
T3 451.92±12.43b 26.27±0.13a 87.09±3.84ab 97.21±0.30a 9214.30±85.81b
T4 412.44±18.91c 26.38±0.19a 83.47±3.97b 97.40±0.79a 7698.40±153.07c
CK 346.92±13.88d 26.31±0.12a 63.24±4.74c 95.97±0.97ab 5055.53±158.57d
[1] 国家统计局. 2023中国统计年鉴. 北京: 中国统计出版社, 2023.
[2] 柴如山, 安之冬, 马超, 等. 我国主要粮食作物秸秆钾养分资源量及还田替代钾肥潜力. 植物营养与肥料学报, 2020, 26(2):201-211.
[3] 宋大利, 侯胜鹏, 王秀斌, 等. 中国秸秆养分资源数量及替代化肥潜力. 植物营养与肥料学报, 2018, 24(1):1-21.
[4] Rehman N, Miranda G I M, Rosa L M S, et al. Cellulose and nanocellulose from maize straw: an insight on the crystal properties. Journal of Polymers and the Environment, 2014, 22 (2):252-259.
[5] 韩亚. 黑土区玉米秸秆腐解特征及其改土效果的研究. 北京: 中国农业科学院, 2019.
[6] 谭可菲, 王麒, 刘传增, 等. 黑龙江西部地区水稻秸秆腐解特征研究. 中国稻米, 2018, 24(4):96-98.
doi: 10.3969/j.issn.1006-8082.2018.04.023
[7] Li L J, Wang Y, Zhang Q, et al. Wheat straw burning and its associated impacts on Beijing air quality. Science in China Series D:Earth Sciences, 2008, 51(3):403-414.
[8] 张经廷, 张丽华, 吕丽华, 等. 还田作物秸秆腐解及其养分释放特征概述. 核农学报, 2018, 32(11):2274-2280.
doi: 10.11869/j.issn.100-8551.2018.11.2274
[9] Kuzyakov Y. Priming effects: Interactions between living and dead organic matter. Soil Biology and Biochemistry, 2010, 42(9):1363-1371.
[10] 罗嘉润, 宋文杰, 刘伟, 等. 秸秆还田配施氮肥早期对水稻生长、土壤性质及微生物多样性的影响. 农业生物技术学报, 2023, 31(10):2019-2034.
[11] 武际, 郭熙盛, 王允青, 等. 不同水稻栽培模式和秸秆还田方式下的油菜、小麦秸秆腐解特征. 中国农业科学, 2011, 44 (16):3351-3360.
doi: 10.3864/j.issn.0578-1752.2011.16.007
[12] 葛选良, 钱春荣, 李梁, 等. 秸秆还田配合施肥措施对玉米产量及耕层土壤质量的影响. 中国土壤与肥料, 2021(1):131-136.
[13] Chandra R, Takeuchi H, Hasegawa T. Methane production from lignocellulosic agricultural crop wastes: A review in context to second generation of biofuel production. Renewable and Sustainable Energy Reviews, 2012, 16(3):1462-1476.
[14] 张丽霞, 王俊文, 王立春, 等. 有机物料腐熟剂在东北农作物秸秆还田上的应用. 东北农业科学, 2018, 43(6):5-8.
[15] 解媛媛, 谷洁, 高华, 等. 微生物菌剂酶制剂化肥不同配比对秸秆还田后土壤酶活性的影响. 水土保持研究, 2010, 17(2):233-238.
[16] 孙建平, 刘雅辉, 马佳, 等. 冀东稻区基于低温复合菌系HT20的秸秆腐解因素研究. 西北农业学报, 2021, 30(9):1418-1426.
[17] 董桂军, 陈兴良, 于洪娇, 等. 寒区长期秸秆全量还田对水稻土理化特性的影响. 土壤与作物, 2019, 8(3):251-257.
[18] Alexander T, Rainer S, M M S, et al. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. The ISME Journal, 2013, 7(2):299-311.
[19] 姚云柯, 周卫, 孙建光, 等. 田间条件下不同促腐菌对水稻秸秆腐解及胞外酶活性的影响. 植物营养与肥料学报, 2020, 26(11):2070-2080.
[20] 青格尔, 于晓芳, 高聚林, 等. 玉米秸秆低温降解复合菌系降解能力及微生物组成研究. 中国生态农业学报(中英文), 2020, 28(11):1753-1765.
[21] 王继莲, 陈芸, 李明源, 等. 产低温纤维素酶菌株的分离鉴定及产酶特征研究. 江西农业大学学报, 2019, 41(2):356-364.
[22] 张楠, 刘杰, 于洪久, 等. 寒地水稻秸秆腐熟剂对水稻秸秆翻埋还田的腐熟效果及土壤养分含量的影响. 黑龙江农业科学, 2020(11):34-37.
[23] 萨如拉, 高聚林, 于晓芳, 等. 玉米秸秆低温降解复合菌系的筛选. 中国农业科学, 2013, 46(19):4082-4090.
doi: 10.3864/j.issn.0578-1752.2013.19.014
[24] 邓飞, 王丽, 刘利, 等. 不同生态条件下栽培方式对水稻干物质生产和产量的影响. 作物学报, 2012, 38(10):1930-1942.
doi: 10.3724/SP.J.1006.2012.01930
[25] 刘梦红, 李红宇, 杜俊, 等. 秸秆还田与蘖肥增氮对寒地水稻产量和氮素吸收利用的影响. 中国农业大学学报, 2023, 28 (9):49-59.
[26] 何艳, 严田蓉, 郭长春, 等. 秸秆还田与栽插方式对水稻根系生长及产量的影响. 农业工程学报, 2019, 35(7):105-114.
[27] 褚光, 徐冉, 陈松, 等. 优化栽培模式对水稻根-冠生长特性、水氮利用效率和产量的影响. 中国水稻科学, 2021, 35(6):586-594.
doi: 10.16819/j.1001-7216.2021.201213
[28] 杨晓东, 刘燕, 徐建军, 等. 连续秸秆还田配施腐熟剂对土壤理化性状及水稻产量的影响. 安徽农业科学, 2016, 44(26):83-84,88.
[29] 杜丑新, 肖云山, 丁平, 等. 早稻秸秆还田添加腐熟剂对晚稻产量及土壤养分的影响. 安徽农业科学, 2016, 44(29):121-122.
[30] 江敏, 何爱斌, 孙会娟, 等. 双季稻双直播模式不同早稻秸秆还田方式下氮肥运筹对晚稻生长发育和土壤理化性质的影响. 作物杂志, 2024(3):100-108.
[31] 李继福, 鲁剑巍, 李小坤, 等. 麦秆还田配施不同腐秆剂对水稻产量、秸秆腐解和土壤养分的影响. 中国农学通报, 2013, 29(35):270-276.
[1] He Yunxia, Ma Jianhui, Zhang Daijing, Liu Donghua, Chao Xiaoyan, Chen Huiping, Li Chunxi. Study on the Effect of Different Nitrogen Fertilizer Synergists on Reducing Gaseous Nitrogen Loss and Increasing Yield in Wheat Field of Northern Henan [J]. Crops, 2025, 41(3): 108-115.
[2] Wang Yi, Ren Yongfu, Zhang Zhengpeng, Ding Defang, Zhang Jing, Liu Yihong, Sun Duoxin, Chen Guangrong. The Effects of Different Covering Materials on Soil Environment and Maize Yield in Hexi Irrigation Area [J]. Crops, 2025, 41(3): 149-155.
[3] Hou Nan, Wu Fengjie, Qi Xiangkun, Wang Yufeng, Yang Kejun, Fu Jian. Effects of Different Nitrogen Application Levels on Carbon Metabolism of Waxy Maize during Filling Period in Black Soil Area [J]. Crops, 2025, 41(3): 178-184.
[4] Zhu Jindi, Zhu Xuegang, Du Wenqing, Qiu Tuoyu, Zhao Xinbin. Effects of Chemical Fertilizer Reduction Combined with Organic Fertilizer Application on Photosynthetic Characteristics, Quality and Yield of Tomatoes Cultivated in Facilities [J]. Crops, 2025, 41(3): 185-189.
[5] Li Hu, Huang Qiuyao, Wu Zishuai, Liu Guanglin, Chen Chuanhua, Luo Qunchang, Zhu Qinan. Effects of Planting Density and Nitrogen Application Rate on Yield and Rice Quality of High-Quality Conventional Rice Guiyu 12 [J]. Crops, 2025, 41(3): 195-201.
[6] Lan Xiu, Li Hengrui, He Hongliang, Ma Xianhua, Huang Xiaojuan, Li Tianyuan, Wei Haiqiu, Jiang Qingmei, Ruan Lixia, Yang Haixia, Liu Bingji, Tang Danfeng. Effects of Intercropping of Sugarcane and Platostoma palustre on Crop Yield, Quality and Economic Benefit [J]. Crops, 2025, 41(3): 202-209.
[7] Wei Mengyang, Luo Zhenbao, He Shuai, Ma Qian, Ma Guankai, Xi Feihu, Luo Dongsheng, Jing Yanqiu, Yu Qiwei, Wang Maoxian. Effects of Interaction between Photosynthetic Bacteria and the Number of Retained Leaves on Physiological Metabolism, Chemical Quality, Yield and Quality of Flue-Cured Tobacco [J]. Crops, 2025, 41(3): 210-217.
[8] Yang Zepeng, Wan Kejun, Zheng Shenghua, Ao Yuqin, Ma Mingkun, Wan Xue, Li Shanshan, Song Xin, Wang Changtao, Chen Shanghong, Liu Dinghui, Chen Honglin. Effects of Nitrogen Fertilizer and Seeding Amount Configuration on Yield Formation of Rapeseed by Aerial Seeding [J]. Crops, 2025, 41(3): 225-232.
[9] Liang Hui, Zhang Jianxin, Xue Lihua, Jia Keke. Effects of Drip Irrigation Amount on Root Growth and Yield of Xinnongdou 2 under the Condition of the Postpone of Water and Nitrogen [J]. Crops, 2025, 41(3): 233-240.
[10] Wang Heya, Luo Jingjing, Meng Ling, Ai Haifeng, Wang Bin, Li Huaisheng, Xu Jingpeng, Xu Xiangyang. Yield Sensitivity Analysis of Edible Sunflower Varieties in Taʼe Basin [J]. Crops, 2025, 41(3): 30-37.
[11] Mao Shunxin, Xiao Wuwei, Zhang Zuolin, Huang Jiada, Wang Fei, Huang Jianliang, Peng Shaobing, Cui Kehui. Effects of Different Irrigation Patterns and Fertilizer Managements on the Growth of Axillary Buds and Yield Formation of Ratoon Season in Ratoon Rice [J]. Crops, 2025, 41(3): 92-101.
[12] Ren Yongfu, Li Jiayi, Chen Guopeng, Pu Tian, Chen Hong, Wang Xiaochun. Effects of Different Planting Patterns on the Yield and Efficiency of Maize in Strip Intercropping System [J]. Crops, 2025, 41(2): 101-108.
[13] Tian Wenqiang, Wang Hongyi, Nie Lingfan, Sun Ganggang, Zhang Jun, Zhang Qiangbin, Yu Shan, Li Jiahao, Zhang Jinshan, Shi Shubing. The Effects of Sowing Date and Sowing Rate on the Growth, Dry Matter Accumulation and Yield of Extremely Late-Sown Wheat Population [J]. Crops, 2025, 41(2): 115-122.
[14] Zhao Lingling, Li Guifang, Cheng Chu, Zheng Mingjie, Hu Min, Zhu Jianfeng, Shen Ayi, Shen Aga, Wang Junzhen, Shao Meihong. Preliminary Report on Introduction Experiment of New Buckwheat Varieties in Zhejiang Province [J]. Crops, 2025, 41(2): 86-92.
[15] Ma Yingchen, Wang Jiatong, Feng Yanfei, Ma Haoxiong, Ren Xuejun, Guo Zhenqing, Li Yun, Han Yucui, Lin Xiaohu. Impacts of the Residual Effects of the Combined Application of Compound Fertilizers and Microbial Inoculant on Soil Physicochemical Properties and Quality of Foxtail Millet [J]. Crops, 2025, 41(2): 141-148.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!