Crops ›› 2025, Vol. 41 ›› Issue (3): 23-29.doi: 10.16035/j.issn.1001-7283.2025.03.004

Previous Articles     Next Articles

Analysis of the Improvement Efficiency of F1 Hybrids between Intergeneric Hybrid (Tripidium arundinaceum×Saccharum spontaneum) and Sugarcane

Huang Yuxin(), Zhang Gemin, Zhou Shan, Duan Weixing, Yang Cuifang, Gao Yijing, Zhang Baoqing()   

  1. Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences / Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs / Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning 530007, Guangxi, China
  • Received:2024-09-03 Revised:2024-12-02 Online:2025-06-15 Published:2025-06-03

Abstract:

The exploration of stress-resistant, strong ratooning ability, and wide adaptability in related sugarcane species such as Tripidium arundinaceum and Saccharum spontaneum renders these species valuable genetic resources for sugarcane breeding. The incorporation of genes from T.arundinaceum and S.spontaneum into sugarcane cultivars via outcrossing promises to expand the genetic diversity of sugarcane, enhance resistance to key pests and diseases, and improve yield. This investigation employed two pairs of EST-SSR primers to confirm the authenticity of the F1 progeny resulting from the cross between sugarcane and the intergeneric hybrid (T.arundinaceum×S.spontaneum), and further analyzed the agronomic characteristics of their F1 generation. The F1 hybrids demonstrated segregation in both phenotypic and agronomic traits. The analysis revealed variability in five agronomic traits - plant height, stalk diameter, single stalk weight, millable stalk number, and brix ranged from 13.76% to 33.51% in the F1 population. The average millable stalk number in the F1 population exceeded that of both parents, while mean plant hight was greater than and stalk diameter equal to the parental averages. The mean single stem weight and brix value were lower than that of the parental average. A total of 68 genuine hybrid F1 were divided into four groups through cluster analysis. Among them, 11 materials such as 221-79 and 221-103 in Group Ⅲ showed better comprehensive performance in agronomic traits such as brix and millable stalk number compared with other groups.

Key words: Sugarcane, Tripidium arundinaceum, Saccharum spontaneum, Hybrid identification, Cluster analysis

Table 1

The names of 68 true hybrid F1"

编号
Code
名称
Name
编号
Code
名称
Name
编号
Code
名称
Name
编号
Code
名称
Name
1 221-2 18 221-30 35 221-68 52 221-94
2 221-5 19 221-31 36 221-71 53 221-95
3 221-9 20 221-35 37 221-74 54 221-96
4 221-10 21 221-36 38 221-76 55 221-98
5 221-12 22 221-38 39 221-77 56 221-99
6 221-13 23 221-42 40 221-79 57 221-100
7 221-15 24 221-45 41 221-80 58 221-103
8 221-16 25 221-46 42 221-81 59 221-104
9 221-18 26 221-48 43 221-82 60 221-106
10 221-19 27 221-49 44 221-83 61 221-107
11 221-22 28 221-50 45 221-85 62 221-108
12 221-23 29 221-51 46 221-86 63 221-110
13 221-25 30 221-52 47 221-87 64 221-113
14 221-26 31 221-62 48 221-88 65 221-114
15 221-27 32 221-63 49 221-89 66 221-115
16 221-28 33 221-66 50 221-90 67 221-119
17 221-29 34 221-67 51 221-93 68 221-120

Fig.1

Identification of primer ESTC50 in part of F1 progeny M: 600 bp DNA marker; ♀: YT93-159; ♂: GXAS07-6-1, 1-72 are F1 progeny. The same below."

Fig.2

Identification of primer ESTC95 in part of F1 progeny"

Fig.3

Comparison of morphological differences between parents and F1 progeny (a) Leaf, (b) Cane, (c) Pollen staining rate."

Table 2

Comparison of agronomic traits between parents and F1 progeny"

性状
Trait
亲本Parent F1群体F1 population
YT93-159 GXAS07-6-1 平均值Mean 范围Range 平均值±标准差Mean±SD 变异系数CV (%)
株高Plant height (cm) 275.4 172.0 223.7 162.0~282.0 230.0±33.0 14.36
茎径Stalk diameter (cm) 2.87 0.82 1.85 1.41~2.38 1.84±0.26 13.76
单茎重Single stalk weight (kg) 1.43 0.09 0.76 0.30~1.10 0.63±0.21 33.51
有效茎数Millable stalk number 28.0 35.0 31.5 16.3~59.7 35.6±11.2 33.10
锤度Brix (%) 20.4 10.7 15.6 8.6~16.6 11.6±2.3 19.85

Fig.4

Cluster analysis of F1 population"

Table 3

The main agronomic traits of four groups"

性状
Trait
类群Group
株高Plant height (cm) 215.0 249.0 245.0 218.0
茎径Stalk diameter (cm) 1.66 2.05 1.75 1.91
单茎重Single stalk weight (kg) 0.47 0.83 0.59 0.63
有效茎数Millable stalk number 39.5 33.6 44.9 26.7
锤度Brix (%) 10.5 11.4 13.1 12.4
[1] Grivet L, Daniels C, Glaszmann J C, et al. A review of recent molecular genetics evidence for sugarcane evolution and domestication. Ethnobotany Research and Applications, 2004, 2(1):9-17.
[2] 赵小坤, 毛钧, 字秋艳, 等. 割手密野生资源抗逆性研究进展. 植物遗传资源学报, 2020, 21(2):287-295.
[3] 陈如凯. 现代甘蔗育种的理论与实践. 北京: 中国农业出版社, 2011.
[4] 刘少谋, 王勤南, 黄忠兴, 等. 崖城系列亲本在我国甘蔗育种中的利用效果. 甘蔗糖业, 2011(4):5-10.
[5] 朱建荣, 桃联安, 董立华, 等. 中国本土割手密血缘创新亲本材料的利用潜力分析. 云南农业大学学报(自然科学), 2011, 26(1):12-19,25.
[6] 邓海华. 我国本土割手密育成品种的亲缘关系分析. 广东农业科学, 2012, 39(8):167-170.
[7] 陈玉水. 台湾的野生蔗及其在甘蔗杂交育种上的应用. 中国糖料, 2006(4):48-50,54.
[8] 毛钧, 应雄美, 陆鑫, 等. 台湾甘蔗种质资源收集保存与育种策略. 中国糖料, 2011(2):55-58,74.
[9] Kumar R, Appunu C, Durai A A, et al. Genetic confirmation and field performance comparison for yield and quality among advanced generations of Erianthus arundinaceus, E.bengalense and Saccharum spontaneum cyto-nuclear genome introgressed sugarcane intergeneric hybrids. Sugar Tech, 2015, 17(4):379-385.
[10] Pachakkil B, Terajima Y, Ohmido N, et al. Cytogenetic and agronomic characterization of intergeneric hybrids between Saccharum spp. hybrid and Erianthus arundinaceus. Scientific Reports, 2019,9:1748.
[11] Meena M R, Kumar R, Ramaiyan K, et al. Biomass potential of novel interspecific and intergeneric hybrids of Saccharum grown in sub-tropical climates. Scientific Reports, 2020, 10(1):21560.
[12] Zhang B Q, Huang Y X, Zhang L J, et al. Genome-wide association study unravels quantitative trait loci and genes associated with yield-related traits in sugarcane. Journal of Agricultural and Food Chemistry, 2023, 71(44):16815-16826.
[13] Huang Y J, Wu J Y, Wang P, et al. Characterization of chromosome inheritance of the intergeneric BC2 and BC3 progeny between Saccharum spp. and Erianthus arundinaceus. PLoS ONE, 2015, 10(7):e0133722.
[14] 李雪停. 甘蔗与斑茅F1减数分裂染色体行为研究. 福州:福建农林大学, 2018.
[15] 刘少谋, 符成, 陈勇生. 近十年海南甘蔗育种场斑茅后代回交利用研究. 甘蔗糖业, 2007(2):1-6,17.
[16] 王丽萍, 蔡青, 范源洪, 等. 甘蔗(Saccharum)与斑茅(Erianthus arundinaceus)远缘杂交利用研究. 西南农业学报, 2007, 20(4):721-726.
[17] 吴小斌, 王勤南, 凌秋平, 等. 甘蔗与斑茅BC1分子鉴定、抗黑穗病和花叶病初步评价. 热带亚热带植物学报, 2019, 27 (1):45-52.
[18] 梁华川, 蔡伟俊, 赵晓凤, 等. 十四个甘蔗与斑茅属间远缘杂交BC3F1品系生理特性研究. 热带农业科学, 2023, 43(11):18-27.
[19] 邓国富. 中国优异作物种质资源开发与利用图鉴:广西卷. 北京: 科学出版社, 2024.
[20] 刘昔辉, 方锋学, 高轶静, 等. 斑茅割手密杂种后代真实性鉴定及遗传分析. 作物学报, 2012, 38(5):914-920.
[21] 黄玉新, 罗霆, 林秀琴, 等. 斑茅割手密复合体(GXAS07-6-1)及其与甘蔗F1的GISH分析. 植物遗传资源学报, 2017, 18 (3):461-466.
[22] 陆鑫, 毛钧, 刘洪博, 等. 甘蔗野生种滇蔗茅种质创新利用研究Ⅰ.甘蔗与滇蔗茅远缘杂交F1群体构建与SSR分子标记鉴定. 植物遗传资源学报, 2012, 13(2):321-324.
[23] 黄玉新, 罗霆, 刘昔辉, 等. 甘蔗与斑茅割手密复合体(GXAS07-6-1)杂交后代的染色体遗传分析. 热带作物学报, 2016, 37(2):220-225.
[24] 毛钧, 蔡青, 陆鑫, 等. 甘蔗杂交后代真实性鉴定技术发展与应用. 中国糖料, 2008(4):62-65.
[25] 田春艳, 边芯, 董立华, 等. 甘蔗野生种割手密杂交F1代SSR鉴定和遗传分析. 热带作物学报, 2022, 43(10):2021-2029.
doi: 10.3969/j.issn.1000-2561.2022.10.007
[26] 刘建乐, 白昌军, 严琳玲, 等. 43份割手密资源农艺性状遗传多样性评价. 热带作物学报, 2015, 36(2):229-236.
[27] 杨翠芳, 张革民, 段维兴, 等. 广西割手密创新种质F1群体的表型多样性分析. 江苏农业科学, 2024, 52(15):85-91.
[28] 靳铎, 张婷, 娄红波, 等. 基于表型和细胞学的甘蔗与蔗茅杂交BC1F1子代的遗传差异. 分子植物育种,(2024-04-02) [2024- 09-03]. http://kns.cnki.net/kcms/detail/46.1068.S.20240401.1510. 009.html.
[29] 陆鑫, 刘新龙, 毛钧, 等. 甘蔗野生种滇蔗茅利用研究Ⅲ.滇蔗茅杂种F1群体的表型变异与遗传多样性分析. 植物遗传资源学报, 2013, 14(4):749-753.
doi: 10.13430/j.cnki.jpgr.2013.04.028
[30] 俞华先, 安汝东, 董立华, 等. 云南八倍体割手密84-268血缘F2群体表型多样性分析. 热带作物学报, 2023, 44(1):49-63.
doi: 10.3969/j.issn.1000-2561.2023.01.006
[31] 符成, 邓海华, 陈西文. 海南甘蔗育种场斑茅研究利用. 甘蔗糖业, 2003(6):1-5,14.
[32] 毛钧, 陆鑫, 刘新龙, 等. 近10年云南野生甘蔗种质资源创新杂交利用初报. 甘蔗糖业, 2012(2):1-5.
[33] 符成, 邓海华, 杨业后, 等. 斑茅及其杂种后代主要经济性状研究. 甘蔗糖业, 2004(4):1-5.
[34] 闫世江, 张继宁, 刘洁. 聚类分析在黄瓜育种中的应用. 当代生态农业, 2012(增1):9-12.
[35] 吴才文, Phillip J, 范源洪, 等. 甘蔗割手密远缘杂交后代产量性状的遗传及分离. 植物遗传资源学报, 2009, 10(2):262-266.
[1] Lan Xiu, Li Hengrui, He Hongliang, Ma Xianhua, Huang Xiaojuan, Li Tianyuan, Wei Haiqiu, Jiang Qingmei, Ruan Lixia, Yang Haixia, Liu Bingji, Tang Danfeng. Effects of Intercropping of Sugarcane and Platostoma palustre on Crop Yield, Quality and Economic Benefit [J]. Crops, 2025, 41(3): 202-209.
[2] Sun Yanjie, Wei Guocai, Wu Yuheng, Shi Yunqiang, Shao Yong, Liu Yingrui, Nan Yuantao, Zhang Weiyao. Genetic Diversity Analysis of 100 Maize Germplasm Resources by SNP Markers [J]. Crops, 2025, 41(2): 14-19.
[3] Ou Kewei, Lu Yefei, Nong Zemei, Zhu Pengjin, Pang Xinhua, Song Qiqi, Lü Ping. Analysis of Cell Structure Characteristics and Polygalacturonase Content Changes in Sugarcane Leaves Abscission Zone at Maturity Stage [J]. Crops, 2025, 41(1): 133-138.
[4] An Dongsheng, Zhao Baoshan, Liu Yang, Yan Chengming, Kong Ran, Huang Wenfu, Su Junbo. Effects of Drought Stress and Re-Watering on the Photosynthetic Phenotype and Leaf Characterization of New Sugarcane Varieties [J]. Crops, 2025, 41(1): 208-213.
[5] Yang Dandan, Han Xue, Kong Xinxin, Zhao Guoxuan, Su Yazhong, Zhao Pengfei, Jin Jianmeng, Zhao Guojian. Identification of Osmotic Stress Resistance and Analysis of Related Agronomic Traits of 71 Winter Wheat Seedlings [J]. Crops, 2025, 41(1): 243-249.
[6] Ma Lina, Wei Yuming, Wen Lifang, Zhang Xuejian, Yang Zhao, Huang Jie, Zhang Shengchang, Li Xiaoyu, Liu Huan, Yang Farong. Analysis of Agronomic Traits and Nutritional Quality of 22 Quinoa Germplasms in Yuanmou Area of Yunnan Province [J]. Crops, 2024, 40(6): 47-54.
[7] Han Xue, Yang Dandan, Kong Xinxin, Zhao Pengfei, Jin Jianmeng, Su Yazhong, Zhao Guoxuan, Zhao Guojian. Genetic Diversity Analysis of Quality Traits and Gliadin in 200 Wheat Germplasm Resources [J]. Crops, 2024, 40(6): 61-70.
[8] Yu Tao, Zhang Jianguo, Cao Jingsheng, Ma Xuena, He Chang’an, Cao Shiliang, Li Shujun, Cai Quan, Li Xin, Li Sinan, Yang Gengbin, Li Wenyue. Identification and Evaluation of Low Temperature Tolerance of 110 New Maize Materials at Germination Stage [J]. Crops, 2024, 40(5): 18-28.
[9] Yang Lipei, Han Shijian, Wei Benhui, Li Zhigang, Li Ruiling, Zhu Shuifang, Xiao Jiming, Li Suli. Effects of Interaction between Organic Fertilizer and Fenlong on Photosynthetic Physiological Characteristics and Tissue and Cell Structure of Sugarcane [J]. Crops, 2024, 40(1): 148-156.
[10] Zhou Huiwen, Yan Haifeng, Qiu Lihang, Fan Yegeng, Zhou Zhongfeng, Luo Ting, Deng Yuchi, Zhang Xiaoqiu, Liang Yongjian, Chen Rongfa, Wu Jianming. Study on Effects of Operation Parameters on Deposition Distribution of UAV Droplets of Sugarcane during Elongating Stage [J]. Crops, 2023, 39(6): 121-126.
[11] Liang Yongjian, Wu Wenzhi, Shi Zesheng, Tang Liqiu, Song Xiupeng, Yan Meixin, Guo Qiang, Qin Changxian, He Hongliang, Zhang Xiaoqiu. Estimation of Sugarcane Plant Height Based on UAV RGB Remote Sensing [J]. Crops, 2023, 39(1): 226-232.
[12] Su Lirong, Tan Yumo, Qin Fang, Li Qin, Zeng Chengcheng, Li Zhongyi, Wei Caihui, Dong Wenbin, Liang Jun, He Tieguang. Effects of Reduced Chemical Fertilizer on Yield and Main Agronomic Traits of Ratoon Sugarcane under Conditions of Returning Green Mung Bean/Black Bean into Field [J]. Crops, 2022, 38(6): 105-110.
[13] Zhao Xiaoqin, Jia Ruiling, Liu Junxiu, Liu Yanming, Wen Yinhua, Shi Lili, Zhang Juanning, Ma Ning. Agronomic Traits and Genetic Diversity Analysis of 120 Foxtail Millet Germplasms [J]. Crops, 2022, 38(6): 61-69.
[14] Jia Guotao, Zhang Junling, Wei Zhuangzhuang, Yuan Qishan, Wang Baolin, Wang Xiaoyu, Ma Shengtao, Yang Xinling, Zhang Ziying, Zhang Shiying, Jia Shiwei, Chen Yang, Liu Huimin. Research on the Regional Characteristics of Contents of Free Amino Acids in Flue-Cured Tobacco Based on Factor Analysis and Cluster Analysis [J]. Crops, 2022, 38(5): 208-214.
[15] Lü Jianzhen, Ren Ying, Wang Hongyong, Zhang Tingjun, Ma Jianping, Zhao Kai. Comprehensive Phenotype Evaluation of 264 Major Foxtail Millet Bred Varieties (Lines) [J]. Crops, 2022, 38(4): 22-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!