Crops ›› 2018, Vol. 34 ›› Issue (1): 41-48.doi: 10.16035/j.issn.1001-7283.2018.01.006

Previous Articles     Next Articles

The Molecular Basis of Holding the Feature and Genetic Purity for Maize Inbred Lines

Lu Shanshan,Wu Chenglai,Li Yan,Zhang Chunqing   

  1. College of Agronomy, Shandong Agricultural University/State Key Laboratory of Crop Biology, Tai′an 271018, Shandong, China
  • Received:2017-11-19 Revised:2017-12-29 Online:2018-02-20 Published:2018-08-24

Abstract:

How to hold the features of maize inbred lines and to improve the genetic purity of inbred lines are important to produce high quality parents and to maintain characteristics of hybrids. But so far, there was not any study on the molecular basis for building the breed-conservation nursery and selecting strains in the propagate process of inbred lines. Three samples of different genetic purity of maize inbred lines were used to survey field traits of generation S2 and S3, and to test the genetic homozygosity on the levels of SSR and SNP after successively inbreeding for three generations, to calculate the required generation number of inbreeding, and to set up the breed-conservation nursery by initial genetic allele homozygosity of inbred lines. The strains, which were uniform with the SSR molecular detection, had many heterozygous loci while detected using SNP maker. With the increase of initial homozygosity, the homozygous efficiency of genetic loci in selecting inbred strains declined. The strains with a higher initial genetic purity were helpful for the rapid homozygosis of genetic locus of progenies. While selecting phenotype characteristics, the characteristics belonging to quality traits and being easier to be homozygosis were selected first, some quantitative characters including the ear length, ear diameter, the number of lateral branches of the first-grade tassel, the number of ear row were selected secondly, and the characteristics which were relatively difficult to be steady, such as the ear height or plant height, the number of grains per row, leaf length, leaf width were selected thirdly in high-generation inbred lines.

Key words: Maize inbred lines, Holding characteristics, SSR molecular markers, SNP molecular markers, Gene homozygosis of inbred lines, Inbred lines characteristics

Table 1

Maize field investigation traits"

编号
Number
群体目测性状
Population visual trait
编号
Number
数量性状(个体)
Quantitative trait (individual)
T1 第一叶鞘花青甙显色 T21 子粒顶端颜色
T2 第一叶顶端形状 T22 子粒背面颜色
T3 叶片弯曲程度 T23 子粒形状
T4 叶片绿色程度 T24 雄穗最低位侧枝以上主轴长度
T5 叶鞘花青甙显色 T25 雄穗最高位侧枝以上主轴长度
T6 雄穗颖片基部花青甙显色 T26 雄穗一级侧枝数目
T7 雄穗颖片除基部外花青甙显色 T27 雄穗侧枝长度
T8 雄穗花药花青甙显色 T28 雄穗侧枝与主轴夹角
T9 雄穗小穗密度 T29 叶片宽度
T10 雄穗侧枝弯曲程度 T30 植株穗位高度
T11 雌穗花丝花青甙显色 T31 植株高度
T12 茎秆“之”字形程度 T32 穗位高与株高比率
T13 茎秆支持根花青甙显色 T33 植株上部叶片与茎秆夹角
T14 抽雄期 T34 植株下部叶片与茎秆夹角
T15 散粉期 T35 果穗长
T16 吐丝期 T36 果穗直径
T17 果穗形状 T37 穗行数
T18 穗轴色 T38 行粒数
T19 果穗子粒颜色数量 T39 叶长
T20 子粒类型

Table 2

Homozygosity of inbred lines of different types and different generations"

自交系
Inbred line
差异位点数
Different loci number
纯合度Homozygosity (%) S3多态位点(%)
S3 polymorphism loci
S0 S1 S2 S3
昌7-2 Chang7-2 0 98.80 99.02 99.07 99.10 0.86
1 97.92 98.70 98.92 99.09 1.64
郑58 Zheng58 0 99.00 99.02 99.16 99.21 0.10
1 98.93 99.02 99.03 99.16 1.18
2 98.87 98.98 99.05 99.13 0.65
LX9801 0 95.60 97.83 98.32 98.79 4.93
1 96.65 97.69 98.51 98.88 7.99
2 94.43 96.18 98.34 98.57 8.20
3 92.94 96.06 97.02 97.53 11.53
4 82.45 92.88 95.62 95.71 27.65

Table 3

The uniform of phenotype traits of inbred lines (S2) with different genetic purity %"

自交系
Inbred line
差异位点数
Different loci number
调查穗行数
Spike rows
T24 T25 T26 T27 T29 T30 T31 T32 T33 T34 T28 平均
Average
昌7-2 0 115 91.88 91.30 95.36 88.12 93.22 92.17 92.52 89.04 96.09 91.74 92.75 92.20
Chang7-2 1 38 93.86 97.37 99.12 91.23 93.16 87.37 93.68 85.26 98.68 100.00 96.49 94.20
郑58 0 344 94.09 93.99 97.67 92.15 93.55 99.77 98.95 90.17 94.91 95.20 96.41 95.17
Zheng58 1 81 92.18 93.83 96.71 86.42 93.09 100.00 99.26 90.37 91.36 97.53 97.94 94.43
2 11 93.94 93.94 100.00 84.85 94.55 100.00 100.00 89.09 100.00 100.00 96.97 95.76
LX9801 0 223 91.03 92.38 95.37 90.58 92.20 92.11 90.04 91.12 93.87 94.47 94.32 92.50
1 255 88.37 83.40 93.07 88.10 91.84 89.18 91.22 90.75 93.59 99.48 94.25 91.20
2 108 85.49 86.73 88.89 91.98 89.63 88.89 90.74 87.59 89.20 99.38 97.53 90.55
3 23 76.81 78.26 89.86 79.71 93.91 86.09 92.17 82.61 94.20 100.00 94.20 87.98
4 18 88.89 90.74 79.63 87.04 64.44 92.22 81.11 87.78 77.78 100.00 85.19 84.98

Table 4

Inbred lines consistency degree of the individual measurement traits %"

自交系
Inbred line
世代
Generation
差异位点数
Different loci number
调查穗行数
Spike rows
T13 T14 T15 T16 T20 T25 T26 T27 T23 T24 T11
昌7-2 S2 0 288 91.29 90.94 89.54 90.59 90.24 86.41 93.73 95.82 98.61 95.82 93.03
Chang7-2 1 70 95.65 94.20 82.61 89.86 92.75 88.84 92.75 92.75 98.55 94.20 91.30
S3 0 115 91.88 91.30 95.36 88.12 93.22 92.17 92.52 89.04 96.09 91.74 92.75
1 38 93.86 97.37 99.12 91.23 93.16 87.37 93.68 85.26 98.68 100.00 96.49
郑58 S2 0 587 92.00 90.98 90.48 92.86 100.00 92.86 93.88 99.83 97.45 99.15 100.00
Zheng58 1 136 96.30 93.33 91.11 92.59 100.00 92.59 96.30 100.00 88.15 95.56 93.33
2 75 100.00 92.00 92.00 92.00 100.00 100.00 96.00 100.00 84.00 88.00 88.00
S3 0 344 94.09 93.99 97.67 92.15 93.55 99.77 98.95 90.17 94.91 95.20 96.41
1 81 92.18 93.83 96.71 86.42 93.09 100.00 99.26 90.37 91.36 97.53 97.94
2 11 93.94 93.94 100.00 84.85 94.55 100.00 100.00 89.09 100.00 100.00 96.97
LX9801 S2 0 438 91.06 91.06 90.83 91.74 90.37 94.95 91.74 96.79 94.72 93.81 93.58
1 491 95.11 93.48 65.38 92.26 73.73 98.57 78.00 96.95 91.24 80.86 86.56
2 422 95.26 91.00 26.54 93.36 38.86 100.00 45.97 98.58 92.89 99.53 96.68
3 72 97.22 97.22 41.67 100.00 38.89 94.44 61.11 88.89 97.22 100.00 99.05
4 58 86.21 96.55 13.79 100.00 44.83 100.00 48.28 100.00 89.66 100.00 91.67
S3 0 223 91.03 92.38 95.37 90.58 92.20 92.11 90.04 91.12 93.87 94.47 94.32
1 255 88.37 83.40 93.07 88.10 91.84 89.18 91.22 90.75 93.59 99.48 94.25
2 108 85.49 86.73 88.89 91.98 89.63 88.89 90.74 87.59 89.20 99.38 97.53
3 23 76.81 78.26 89.86 79.71 93.91 86.09 92.17 82.61 94.20 100.00 94.20
4 18 88.89 90.74 79.63 87.04 64.44 92.22 81.11 87.78 77.78 100.00 85.19

Fig.1

SNP loci practical value and theoretical value"

Table 5

The investigation results of phenotype traits about the uniform strains with SSR makers"

群体目测性状
Population visual trait
自交系 Inbred line 群体目测性状
Population visual trait
自交系 Inbred line 数量性状
Quantitative trait
自交系 Inbred line
昌7-2
Chang7-2
郑58
Zheng58
昌7-2
Chang7-2
郑58
Zheng58
昌7-2
Chang7-2
郑58
Zheng58
T1 T4 T31 ×
T2 T5 T30 ×
T14 T10 T32 × ×
T15 T11 T29 × ×
T16 T17 T24 × ×
T6 T19 T25 × ×
T7 T20 T27 × ×
T8 T21 T26
T9 T22 T33
T12 T23 T34 ×
T13 T18 T28 ×
T3

Table 6

The results of quantitative traits about the uniform strains at generation S3 with SNP makers"

性状
Trait
昌7-2 Chang7-2 郑58 Zheng58
H837 H853 H861 H891 H912 H1026 H1047 H1093 H1131 H1171
T31 × × × × × × ×
T30 × × × × ×
T32 × × ×
T39 × ×
T29 × ×
T26
T35
T36
T37
T38 × × ×
[1] 张全志 . 种子管理全书. 北京: 北京科学技术出版社, 2004: 121-124.
[2] Cross J, Jewell D C, Deutsch J A , et al. Gene action and the bottleneck effect in relation to sample size for maintenance of cross-pollinated populations. Field Crops Research, 1992,29(3):225-239.
doi: 10.1016/0378-4290(92)90027-7
[3] 张国范, 刘述锡, 刘晓 , 等. 海湾扇贝自交家系的建立和自交效应. 中国水产科学, 2003,10(6):441-445.
[4] 徐雁飞, 陈发棣, 滕年军 , 等. 菊花自交衰退现象初步研究. 植物资源与环境学报, 2009,18(4):28-32.
[5] 杨廷奎, 刘建新, 梁顺忠 . SC-704玉米双亲混杂退化的原因及对策. 新疆农业科技, 2002(1):32.
doi: 10.3969/j.issn.1007-3574.2002.01.025
[6] 李发民, 毛建昌, 杨金慧 . 玉米自交系K12原种的保纯与创新. 中国种业, 2005(6):41-42.
[7] 李文霞, 徐东, 马占山 , 等. 玉米自交系3081在繁殖中存在的问题及对策. 内蒙古农业科技, 2006(4):64.
[8] 赵亚丽 . 玉米昌7-2近缘系的遗传多样性及其杂交后代的性状比较分析. 郑州:河南农业大学, 2006.
doi: 10.7666/d.y962537
[9] 王小星 . 优良玉米杂交种亲本株系选择及其遗传效应. 郑州:河南农业大学, 2007.
[10] 马俊峰 . 交替选择技术在玉米自交系改良中的应用研究. 郑州:河南农业大学, 2012.
doi: 10.7666/d.y1728553
[11] 董朋飞 . 郑单958双亲近缘系的生育差异及其在F1中的遗传表现. 郑州:河南农业大学, 2008.
doi: 10.7666/d.y1336443
[12] Suszka J, Plitta B P, Michalak M , et al. Optimal seed water content and storage temperature for preservation of Populus nigra L. germplasm. Annals of Forest Science, 2014,7(1):543-549.
[13] Prokopiev I A, Filippova G V, Shein A A . Effect of different conditions of welsh onion seed storage on germination and cytogenic characteristics of its seedlings. Russian Journal of Genetics Applied Research, 2014,4(6):614-617.
doi: 10.1134/S2079059714060173
[14] Stanwood P C. Cryopreservation of seed germplasm for genetic conservation//Kartha K K. Cryopreservation of Plant Cells and Organs. Boca Raton Florida: CRC Press, 1985: 199-226.
[15] 陈晓玲 . 植物种质资源超低温保存现状及其研究进展. 植物遗传资源学报, 2013,14(3):414-427.
[16] 陆作楣, 承泓良, 焦达仁 . 棉花“自交混繁法”原种生产技术研究. 南京农业大学学报, 1990(4):14-20.
doi: 10.7685/j.issn.1000-2030.1990.04.003
[17] 陆作楣, 陶瑾 . 稻麦良种繁育新技术—株系循环法. 种子世界, 1992(10):18-19.
[18] 章元明, 盖钧镒 . 大豆地方品种种质保持中适宜样本容量的研究. 中国农业科学, 1995(A01):70-75.
[19] 马缘生, 范传珠, 王述民 , 等. 五种作物基因库种子繁殖更新技术研究. 植物遗传资源学报, 2002,3(2):1-7.
doi: 10.3969/j.issn.1672-1810.2002.02.001
[20] 马倩 . 玉米种质更新过程中遗传完整性变化的影响因素研究. 北京:中国农业科学院, 2005.
[21] 张春庆 . 玉米水稻杂交种子生产技术. 济南: 山东科学出版社, 2015: 51-66.
[22] 赵自仙, 高祥扩, 杨克昌 , 等. 玉米自交系选育的方法综述. 种子, 2002(3):42-44.
[23] 中华人民共和国农业部, NY/T 2232-2012 植物新品种特异性、一致性和稳定性测试指南玉米, 2012.
[24] 王丽霞, 王立新, 季伟 , 等. 小麦F4代株系的DNA位点纯合率和农艺性状变异幅度. 分子植物育种, 2009,7(4):703-708.
doi: 10.3969/mpb.007.000703
[25] 谭龙涛, 喻春明, 陈平 , 等. 苎麻纯合进度研究. 中国农业科学, 2014,47(22):4371-4379.
[26] 王永强, 刘建光, 赵俊丽 . 利用SSR分子标记辅助棉花提纯选育的研究. 分子植物育种, 2014(3):492-498.
[27] 王立新, 季伟, 李宏博 , 等. 以DNA位点纯合率评价小麦品种的一致性和稳定性. 作物学报, 2009,35(12):2197-2204.
doi: 10.3724/SP.J.1006.2009.02197
[28] 彭定祥 . 苎麻自交纯化的选择方法. 华中农业大学学报, 1993,12(2):106-111.
[29] 付小琼 . 利用SSR分子标记开展棉花辅助育种的研究//中国棉花学会2012年年会暨第八次代表大会, 2012.
[1] Yaohai Yue,Ming Lu,Jianxin Zhang,Yingjie Ma,Xudong Zhou,Wanqing Zhao,Shaoping Wang,Zhijun Zhang,Wenguo Liu. The Breeding of Jiyou 101 Haploid Inducer with High Frequency Parthenogenesis in Maize [J]. Crops, 2017, 33(3): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .