Crops ›› 2020, Vol. 36 ›› Issue (3): 42-46.doi: 10.16035/j.issn.1001-7283.2020.03.007

Previous Articles     Next Articles

Genetic Analysis of Grain Shape Related Traits in Tartary Buckwheat

Li Chunhua1,2, Huang Jinliang3, Yin Guifang1, Wang Yanqing1, Lu Wenjie1, Sun Daowang1, Wang Chunlong2, Guo Laichun2, Hong Bo4, Ren Changzhong2(), Wang Lihua1()   

  1. 1Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Yunnan Provincial Key Laboratory of Agricultural Biotechnology/Key Laboratory of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Kunming 650205, Yunnan, China
    2Baicheng Academy of Agricultural Sciences of Jilin Province, Baicheng 137000, Jilin, China
    3Jilin Dunhua Potato Development and Breeding Center, Dunhua 133700, Jilin, China
    4Baoyun Station for Popularizing Agricultural Technology, Huize 654200, Yunnan, China
  • Received:2019-11-06 Revised:2019-12-20 Online:2020-06-15 Published:2020-06-10
  • Contact: Changzhong Ren,Lihua Wang E-mail:renchangzhong@163.com;wanglihua70@hotmail.com

Abstract:

In this study, we used the hybrid offspring of two tartary buckwheat varieties with large difference in grain size to carry out the genetic parameter of grain-related traits closely related to yield and the phenotypic and genetic correlation among grain-related traits. The results showed that grain length, grain width, length-width ratio and 1000-kernel weight of F2 and F3 populations were all higher than that of their parents, the coefficient of variation of grain length, grain width and length-width ratio was less than 10%, and the coefficient of variation of 1000-kernel weight was more than 10%. In addition, the additive variance of grain length, grain width, length-width ratio and 1000-kernel weight were higher than that of the dominant variance. The broad sense heritability was from 0.77 to 0.82 and from 0.82 to 0.85 in F2 and F3 generations, respectively, and the true sense heritability was over 0.80. The correlation analysis between grain shape traits showed that there were significant phenotypic positive correlations among grain length, grain width and 1000-kernel weight, and the genetic correlation coefficients of grain width and 1000-kernel weight, grain length and aspect ratio was large. The above results indicated that grain shape related traits with high heritability could be selected in early generations, but since these traits were quantitative traits and controlled by multiple genes, it was suggested that the offspring should continue to be propagated until the genotype was stable, it is most effective to select the characters with the correlation among them.

Key words: Tartary buckwheat, Grain shape, Genetic rule, Genetic correlation, Phenotypic correlation

Fig.1

Determination of hybrids"

Table 1

Isolation ratio of F2 and F3 population and phenotypic values of agronomic traits"

性状Trait 2014 2015
F2群体 F2 population 亲本Parent F3群体 F3 population 亲本Parent
变异范围
Range of
variation
平均值Average
value
变异系数
Coefficient of
variation (%)
母本
Female
parent
父本
Male
parent
变异范围
Range of
variation
平均值Average
value
变异系数
Coefficient of
variation (%)
母本
Female
parent
父本
Male
parent
粒长Grain length (mm) 3.03~5.42 4.55 5.64 4.33 3.87 3.85~5.70 4.86 6.62 4.39 4.31
粒宽Grain width (mm) 2.13~3.35 3.02 5.03 3.22 2.40 2.50~3.75 3.16 8.19 3.33 2.89
长宽比Length-width ratio 1.32~1.96 1.64 7.01 1.36 1.60 1.12~1.77 1.44 7.33 1.33 1.54
千粒重1000-kernel weight (g) 7.50~18.08 14.70 10.25 17.62 10.49 11.13~23.19 17.91 14.26 19.61 12.70

Table 2

Genetic parameters of agronomic traits"

性状Trait 加性方差Additive variance (A) 显性方差Dominance variance (D) 平均显性度
Average degree of dominanace ($\sqrt{\text{D/A}}$)
广义遗传率
Broad sense heritability
狭义遗传率
Narrow sense heritability
固定遗传率
True sense
heritability
F2 F3 F2 F3
粒长Grain length 11.12 6.07 0.74 0.81 0.85 0.71 0.75 0.87
粒宽Grain width 22.96 19.90 0.93 0.82 0.85 0.66 0.72 0.86
长宽比Length-width ratio 4.07 1.51 0.61 0.78 0.83 0.68 0.75 0.80
千粒重1000-kernel weight 24.95 11.79 0.69 0.77 0.82 0.73 0.77 0.84

Table 3

Phenotypic and genetic correlation between agronomic traits"

性状Trait 千粒重
1000-kernel
weight
粒长
Grain
length
粒宽
Grain
width
长宽比
Length-width
ratio
千粒重1000-kernel weight 0.52 -0.88 -0.18
粒长Grain length -0.42** -0.46 0.71
粒宽Grain width -0.53** 0.55** -0.31
长宽比Length-width ratio -0.23* 0.25* -0.66**
[1] 陈庆富 . 荞麦属植物科学. 北京: 科学出版社, 2012.
[2] 赵刚, 陕方 . 中国苦荞. 北京: 科学出版社, 2009.
[3] 林如法 . 苦荞举要. 北京: 中国农业出版社, 2013.
[4] 喻辉辉 . 苦荞提取物对大鼠血糖及血脂的影响. 中医药导报, 2010,16(7):122-123.
[5] 姜研, 薛玲, 李晓军 , 等. 荞麦黄酮复方制剂对糖尿病大鼠肾脏组织形态学变化的抑制作用. 吉林大学学报(医学版), 2012,38(5):924-927.
[6] 石春海, 申宗坦 . 籼稻粒形及产量性状的加性相关和显性相关分析. 作物学报, 1996,22(1):36-42.
[7] 薄颖生, 彭少兵, 翟梅枝 , 等. 核桃青果与坚果外观性状相关性研究. 北方园艺, 2014(8):13-17.
[8] 徐绍英, 陈文华, 张伟梅 , 等. 二棱大麦籽粒外观品质性状的遗传研究. 浙江大学学报(农业与生命科学版), 1994,20(6):593-598.
[9] 崔娅松, 王艳, 杨丽娟 , 等. 米苦荞果壳率及其相关性状的遗传研究. 作物杂志, 2019(2):51-60.
[10] 张颖慧, 谢永楚, 董少玲 , 等. 利用水稻籼粳重组自交系群体研究粒型性状与千粒重的相关性. 江苏农业学报, 2012,28(2):231-235.
[11] Tan Y F, Xing Y Z, Li J X , et al. Genetic bases of appearance quality of rice grains in Shanyou 63,an elite rice hybrid. Theoretical and Applied Geneties, 2000,101:823-829.
[12] 杜欢, 张颖, 薛梦瑶 . 大麦株高近等基因系的籽粒性状差异及相关性分析. 华北农学报, 2015,30(5):97-103.
doi: 10.7668/hbnxb.2015.05.016
[13] 于波, 高冠军, 张庆路 . 水稻外观品质性状和千粒重的QTLs分析. 湖北农业科学, 2012,51(19):4187-4193.
[14] 王松凤, 李辉, 刘喜 , 等. 水稻粒形相关性状及千粒重QTL的稳定性分析. 南京农业大学学报, 2008,31(3):1-7.
[15] 松尾孝嶺 . 育種ハンドブック. 東京:養賢堂, 1974.
[16] 鵜飼保雄 . 量的形質の遺伝解析. 東京: 医学出版, 2002.
[17] 李春花, 王艳青, 卢文洁 , 等. 种植密度对“云荞1号”产量及相关性状的影响. 中国农学通报, 2015,31(9):128-131.
[18] 李春花, 尹桂芳, 王艳青 , 等. 云南苦荞种质资源主要性状的遗传多样性分析. 植物遗传资源学报, 2016,17(6):993-999.
[19] 農林水産省農業研究センター. 農業研究センター研究資料第30号. 東京:イネ育種マニュアル, 1995: 308.
[20] 符福鸿, 王丰, 黄文剑 , 等. 杂交水稻谷粒性状的遗传分析. 作物学报, 1994,20(1):39-45.
[21] 卢瑶, 赵芳明, 钟乘强 , 等. 两套籼型杂交水稻材料粒形遗传效应分析. 西南农业学报, 2008,21(1):1-5.
[22] 石春海, 申宗坦 . 早籼稻谷粒性状遗传效应的分析. 浙江农业大学学报, 1994,20(4):405-410.
[23] Li C H, Kobayashi K, Yoshida Y , et al. Genetic analyses of agronomic traits in Tartary buckwheat [Fagopyrum tartaricum (L.) Gaertn.]. Breeding Science, 2012,62:303-309.
doi: 10.1270/jsbbs.62.303
[24] Li C H, Xie Z M, Wang Y Q , et al. Correlation and genetic analysis of seed shell thickness and yield factors in Tartary buckwheat [Fagopyrum tartaricum (L.) Gaertn.]. Breeding Science, 2019,69:464-470.
doi: 10.1270/jsbbs.18081
[25] 石春海, 申宗坦 . 早籼粒形的遗传和改良. 中国水稻科学, 1995,9(1):27-32.
[26] 赵锦龙, 冯洁深, 白和灵 , 等. 水稻籽粒大小相关性状QTL定位. 云南农业大学学报:自然科学, 2017,32(5):747-755.
[27] Haddad N I, Muehlbauer F J . Comparison of random bulk population and single-seed-descent methods for lentil breeding. Euphytica, 1981,30:643-651.
doi: 10.1007/BF00038792
[28] 李春花, 大泽良, 小林喜和 , 等. 苦荞杂交后代优良株系筛选研究. 植物遗传资源学报, 2015,16(1):168-172.
[1] Chengrui Ma,Dabing Xiang,Yan Wan,Jianyong Ouyang,Yue Song,Zhengsong Tang,Jianying Liu,Gang Zhao. Difference Analysis of Spatial Distribution Characteristics of Different Tartary Buckwheat Varieties [J]. Crops, 2020, 36(1): 35-40.
[2] Yang Tian,Zhang Yongqing,Dong Fuhui,Ma Xingxing,Xue Xiaojiao. Research on the Root Growth of Different Drought-Resistant Fagopyrum tataricum under Different Water Conditions [J]. Crops, 2019, 35(6): 76-82.
[3] Song Lifang,Feng Meichen,Zhang Meijun,Xiao Lujie,Wang Chao,Yang Wude,Song Xiaoyan. Effects of Exogenous Selenium on the Growth and Development of Tartary Buckwheat and Selenium Content in Grains [J]. Crops, 2019, 35(3): 150-154.
[4] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao [J]. Crops, 2019, 35(3): 37-41.
[5] Yasong Cui, Yan Wang, Lijuan Yang, Chaoxin Wu, Piao Zhou, Pan Ran, Qingfu Chen. Genetic Analysis of Fruit Hull Rate and Related Traits on Tartary Buckwheat [J]. Crops, 2019, 35(2): 51-60.
[6] Yu Fan,Hongli Wang,Feng He,Dili Lai,Jiajun Wang,Yue Song,Dabing Xiang. Nutritional Quality in Seeds of Tartary Buckwheat Affected by After-Ripening [J]. Crops, 2018, 34(1): 96-101.
[7] Yue Song,Dabing Xiang,Houbing Huang,Yu Fan,Shuang Wei,Sai Zhang. Lodging Resistance Identification and Evaluation of Different Tartary Buckwheat Cultivars [J]. Crops, 2017, 33(6): 65-71.
[8] Xiushi Yang,Zhongxian Guo,Huimin Guo,Hui Wang,Sancai Liu. Effects of Sowing Date and Seeding Density on the Yield and Quality of Buckwheat [J]. Crops, 2017, 33(1): 88-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!