Crops ›› 2020, Vol. 36 ›› Issue (1): 35-40.doi: 10.16035/j.issn.1001-7283.2020.01.007

Previous Articles     Next Articles

Difference Analysis of Spatial Distribution Characteristics of Different Tartary Buckwheat Varieties

Chengrui Ma1,Dabing Xiang1,2(),Yan Wan1,Jianyong Ouyang1,Yue Song1,Zhengsong Tang1,Jianying Liu1,Gang Zhao1,2   

  1. 1College of Pharmacy and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, China
    2Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu 610106, Sichuan, China
  • Received:2019-07-18 Revised:2019-08-05 Online:2020-02-15 Published:2020-02-23
  • Contact: Dabing Xiang E-mail:xiang@163.com

Abstract:

Eight tartary buckwheat cultivars were used as experimental materials to study the differences of flowers and grains in different parts of plants of different tartary buckwheat cultivars. The results showed that there were significant differences in the total number of flowers and seeds among different tartary buckwheat varieties. The total number of flowers and grains of Chuanqiao 2 was the highest, being 3 046.6 and 1 367.8, respectively, but Chuanqiao 1 was the lowest, being 1 017.6 and 487.2, respectively. The coefficients of variation of total flowers and total grains were 34.8% and 29.0% respectively. Analyzing the spatial distribution of flowers and grains showed that different tartary buckwheat varieties showed the same trend on their spatial distribution, and both flowers and grains distributing on branches were significantly higher than that on the main stem. Branched flowers and grains accounted for 76.3% and 74.2% of the whole plant, respectively, significantly higher than the main stem. The branched grains and flowers were 68.7%-87.0% and 65.2%-84.5% higher than the main stem, respectively. In production, the yield of tartary buckwheat can be increased by regulating the number of effective grains on branches.

Key words: Tartary buckwheat, Spatial distribution, Grain, Flower

Table 1

The test varieties and sources"

品种Variety 来源Source
川荞2号Chuanqiao 2 (CQ2) 四川省凉山州西昌农业科学研究所
六苦3号Liuku 3 (LK3) 贵州省六盘水市农业科学研究所
西荞1号Xiqiao 1 (XQ1) 农业农村部杂粮加工重点试验室
滇宁1号Dianning 1 (DN1) 云南省农业科学院农作物品种资源站
西荞2号Xiqiao 2 (XQ2) 四川省西昌农业高等专科学校
晋苦6号Jinku 6 (JK6) 山西省农业科学院高寒区作物研究所
黔苦3号Qianku 3 (QK3) 贵州省威宁县农业科学研究所
川荞1号Chuanqiao 1 (CQ1) 四川省凉山彝族自治州昭觉农业科学研究所

Table 2

Number of flowers and grains of different tartary buckwheat varieties"

品种Variety 总花Total flower 总籽粒Total grain 枯花Sterile flower 瘪粒Inferior grain 饱满籽粒Superior grain
CQ2 3 046.6±381.3a 1 367.8±136.4a 1 678.8±260.6a 591.6±65.0a 776.2±81.3a
LK3 2 938.8±513.6a 1 122.0±203.9ab 1 816.8±323.4a 545.2±124.9a 576.8±96.4ab
XQ1 2 494.8±343.5ab 1 125.8±177.5ab 1 369.0±224.1ab 512.8±63.9ab 613.0±118.5ab
DN1 1 905.8±155.5bc 946.4±130.6bc 959.4±58.2bc 425.8±50.4abc 520.6±87.6b
XQ2 1 882.2±199.0bc 890.6±142.3bc 991.6±149.8bc 428.8±82.8abc 461.8±71.4bc
JQ6 1 598.2±258.7cd 832.8±126.3bcd 765.4±145.9c 325.6±43.3bcd 507.2±83.6bc
QK3 1 532.4±188.4cd 720.0±86.4cd 812.4±118.9c 270.4±28.0cd 449.6±70.5bc
CQ1 1 017.6±74.4d 487.2±55.4d 530.4±22.1c 219.2±29.2d 268.0±27.3c
变异系数Coefficient of variation (%) 34.8 29.0 41.1 32.2 28.0

Table 3

Proportion of flowers in different parts in the whole plant %"

品种
Variety
主茎
Main stem
分枝
Branch
一级分枝
Primary branch
二级分枝
Secondary branch
CQ2 14.4±1.8d 85.7±1.8a 49.4±3.1b 36.2±4.3c
LK3 15.2±2.3d 84.8±2.3a 51.4±3.1b 33.4±3.5c
XQ1 14.8±2.2d 85.2±2.2a 48.0±2.8b 37.2±3.8c
DN1 22.2±2.2c 77.8±2.2a 49.3±2.7b 28.5±1.2c
XQ2 11.5±0.8c 88.5±0.8a 47.2±4.5b 41.3±4.4b
JK6 18.5±3.2d 81.5±3.2a 50.2±2.2b 31.4±5.0c
QK3 23.9±2.5c 76.3±2.5a 54.5±4.2b 21.8±2.3c
CQ1 18.8±3.9c 81.3±3.9a 53.0±2.9b 28.3±4.1c

Table 4

Proportion of sterile flowers in different parts in the whole plant %"

品种
Variety
主茎
Main stem
分枝
Branch
一级分枝
Primary branch
二级分枝
Secondary branch
CQ2 12.6±1.4c 87.4±1.4a 47.3±3.8b 40.1±4.9b
LK3 13.9±2.7d 86.1±2.7a 51.1±3.2b 35.0±3.3c
XQ1 13.6±2.1d 86.5±2.1a 46.9±2.3b 39.6±3.1c
DN1 20.0±2.2d 80.0±2.2a 48.8±2.9b 31.2±1.8c
XQ2 9.6±0.8c 90.4±0.8a 46.3±4.9b 44.1±4.5b
JK6 16.5±4.1d 83.5±4.1a 49.0±2.4b 34.4±6.0c
QK3 22.0±2.8c 78.0±2.8a 52.3±3.8b 25.7±2.3c
CQ1 18.5±3.6d 81.5±3.6a 49.9±2.3b 31.6±3.8c

Table 5

Proportion of grains in different parts in the whole plant %"

品种
Variety
主茎
Main stem
分枝
Branch
一级分枝
Primary branch
二级分枝
Secondary branch
CQ2 16.1±2.4d 83.9±2.4a 51.7±2.5b 32.1±4.1d
LK3 17.7±2.2d 82.4±2.2a 51.8±3.2b 30.6±4.3c
XQ1 16.6±2.5d 83.4±2.5a 49.5±3.9b 33.9±5.4c
DN1 24.2±2.5c 75.8±2.5a 49.9±2.6b 26.0±0.9c
XQ2 13.4±1.5d 86.6±1.5a 48.5±4.3b 38.1±4.3c
JK6 20.5±2.3c 79.5±2.3a 51.2±2.2b 28.3±4.0c
QK3 25.8±3.1c 74.2±3.1a 56.8±4.7b 17.4±1.9d
CQ1 19.1±4.5c 80.9±4.5a 56.5±3.5b 24.4±5.0c

Table 6

Proportion of shredded grains in different parts in the whole plant %"

品种
Variety
主茎
Main stem
分枝
Branch
一级分枝
Primary branch
二级分枝
Secondary branch
CQ2 15.3±2.5d 84.7±2.5a 48.4±3.2b 36.3±4.7c
LK3 14.9±2.5c 85.1±2.5a 45.9±3.6b 39.2±5.4b
XQ1 17.7±4.6c 82.3±4.6a 45.5±5.3b 36.8±8.2b
DN1 21.4±4.0c 78.6±4.0a 49.1±4.4b 29.5±3.0c
XQ2 11.5±1.4c 88.5±1.4a 47.1±3.5b 41.5±4.7b
JK6 19.1±1.9c 80.9±1.9a 44.6±6.0b 36.4±5.8c
QK3 27.8±3.9c 72.2±3.9a 56.4±6.2b 15.8±4.4c
CQ1 20.2±4.5c 79.8±4.5a 55.6±5.5b 24.2±5.1c

Table 7

Proportion of full grains in different parts in the whole plant %"

品种
Variety
主茎
Main stem
分枝
Branch
一级分枝
Primary branch
二级分枝
Secondary branch
CQ2 16.9±2.4d 83.1±2.4a 54.2±2.4b 29.0±3.7c
LK3 20.5±1.9c 79.5±1.9a 57.3±3.3b 22.2±3.4c
XQ1 14.5±0.8d 85.5±0.8a 52.8±3.6b 32.7±3.1c
DN1 26.6±1.8c 73.4±1.8a 49.9±1.7b 23.5±0.8c
XQ2 14.9±2.8d 85.1±2.8a 50.2±5.9b 34.9±5.4c
JK6 21.7±3.9c 78.3±3.9a 55.3±2.3b 23.0±3.4c
QK3 28.5±3.8d 71.5±3.8a 59.3±5.2b 12.2±1.7c
CQ1 18.9±4.4c 81.1±4.4a 60.4±4.4b 20.7±6.0c
[1] 聂薇, 李再贵 . 苦荞麦营养成分和保健功能. 粮油食品科技, 2016,24(1):40-45.
[2] 唐链, 梁成刚, 梁龙兵 , 等. 苦荞株高及主茎分枝数的遗传相关分析. 江苏农业科学, 2016,44(9):129-132.
[3] Pearson T C . Detection of pistachio nuts with closed shells using impact acoustics. Applied Engineering in Agriculture, 2001,17(2):249-253.
[4] 邹亮, 赵钢, 周浓 , 等. 苦荞黄酮提取与分离技术的研究进展. 安徽农业科学, 2009,37(27):13235-13237.
[5] 向达兵, 彭镰心, 赵钢 , 等. 荞麦栽培研究进展. 作物杂志,2013(3):1-6.
[6] 赵钢, 陕方 . 中国苦荞. 北京:科学出版社, 2009.
[7] 向达兵, 邹亮, 彭镰心 , 等. 适宜机播深度及覆土厚度提高苦荞幼苗素质. 农业工程学报, 2014,30(12):26-33.
[8] Xiang D B, Zhao G, Wan Y , et al. Effect of planting density on lodging-related morphology,lodging rate,and yield of tartary buckwheat (Fagopyrum tataricum). Plant Production Science, 2016,19(4):479-488.
[9] 李淑久, 张惠珍 . 四种荞麦生殖器官的形态学研究. 贵州农业科学,1992(6):32-36.
[10] 蒋俊方, 王敏浩 . 养麦花器外形结构和开花生物学特性的初步观察. 内蒙古大学学报(自然科学版),1986(3):501-511.
[11] 赵钢, 唐宇 . 荞麦开花期雄性授精进程的研究. 园艺与种苗,1996(3):55-56.
[12] 陈书强 . 两种穗型品种粒重和结实率在穗上不同粒位的分布差异. 黑龙江农业科学,2014(4):18-26.
[13] 李金霞, 章建新, 邢勇峰 , 等. 高产春大豆结实性垂直分布规律初步研究. 新疆农业科学, 2009,46(3):493-497.
[14] 王上, 郑瑛, 杨国威 , 等. 黑龙港低平原地区绿豆高产品种筛选. 河北农业科学,2019(2):79-85.
[15] 董昕, 官玲, 杨华 , 等. 重庆地区玉米地方品种农艺性状与品质性状综合评价. 南方农业学报, 2019,50(5):932-941.
[16] 王小军 . 庄浪县旱地梯田马铃薯不同覆盖模式水分效应试验报告. 农业科技与信息,2019(2):13-15,20.
[17] 李建厂, 李永红, 张振兰 , 等. 不同栽培措施和药剂对油菜茎象甲防治效果及对油菜的影响. 植物保护, 2018,44(6):214-218.
[18] 王畅, 赵海东, 冯乃杰 , 等. S3307和DTA-6对芸豆生殖生长阶段光合特性和产量的影响. 草业学报, 2018,27(11):162-170.
[19] 赵晴, 杨梦雅, 赵国顺 , 等. 缓释肥用量对夏谷光合特性、物质积累分配和产量性状的影响. 中国农学通报, 2019,35(12):28-33.
[20] 杨武德, 郝晓玲, 杨玉 . 荞麦光合产物分配规律及其与结实率关系的研究. 中国农业科学,2002(8):934-938.
[21] 顾自奋, 朱庆森, 曹显祖 . 水稻结实率的研究——稻穗上强弱势粒的干重积累过程与空秕粒的分布. 中国农业科学,1981(6):38-43.
[22] Bjor T, 赵钢 . 荞麦开花期雄性授精进程的研究. 国外农学:杂粮作物,1996(3):98-101.
[23] Hiroyasu M, Masamichi A , et al. Effect of air temperature on the growth,flowering and ripening in common buckwheat. Advances in Buckwheat Research, 2001: 138-142.
[24] 唐宇, 任建川 . 营养元素和植物生长物质对苦荞麦受精结实效应的研究. 植物生理学通讯,1987(3):18-20,28.
[25] Dofing S M, Knight C W . Yield component compensation in uniculm barley lines. Agronomy Journal, 1994,86(2):273-276.
[26] 薛菁芳, 陈书强, 杜晓东 , 等. 黑龙江省两种不同穗型水稻品种的子粒灌浆特性. 湖北农业科学, 2014,53(12):2736-2742.
[27] 刘鑫, 尹设飞, 朱海江 , 等. 杂交稻异步灌浆现象研究(综述). 上海农业学报,2004(1):37-40.
[28] Schnyder H . The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain-filling-a review. New Phytologist, 1993,123(2):233-245.
[29] 黄升谋 . 水稻强弱势粒结实生理及其调控途径研究. 长沙:湖南农业大学, 2003.
[30] Yang J C, Zhang J H . Grain-filling problem in 'super' rice. Journal of Experimental Botany, 2010,61(1):1-5.
[31] Board J E, Harville B G, Saxton A M . Branch dry weight in relation to yield increases in narrow-row soybean. Agronomy Journal, 1990,82(3):540-544.
[32] Norsworthy J K, Shipe E R . Effect of row spacing and soybean genotype on mainstem and branch yield. Agronomy Journal, 2005,97(3):919-923.
[33] 徐芦, 高金锋, 王鹏科 , 等. 灰色关联分析在苦荞区试产量性状上的应用. 种子, 2010,29(6):64-66.
[34] 汪灿, 胡丹, 杨浩 , 等. 苦荞主要农艺性状与产量关系的多重分析. 作物杂志,2013(6):18-22.
[35] 罗燕, 敖学成 . 秋播苦荞麦单株性状与株产种量的相关通径分析. 牧草与饲料,2012(2):31-34.
[36] 杨玉霞, 吴卫, 郑有良 , 等. 苦荞主要农艺性状与单株籽粒产量的相关和通径分析. 安徽农业科学,2008(16):6719-6721,6746.
[37] 赵鑫, 陈少锋, 王慧 , 等. 晋北地区不同苦荞品种产量和品质研究. 作物杂志,2018(5):27-32.
[38] Assuero S, Tognetti J A . Tillering regulation by endogenous and environmental factors and its agricultural management. Plant Biotechnology Journal, 2010,4(1):35-48.
[39] Ongaro V . Hormonal control of shoot branching. Journal of Experimental Botany, 2008,59(1):67-74.
[40] Muller D, Leyser O . Auxin,cytokinin and the control of shoot branching. Annals of Botany, 2011,107(7):1203-1212.
[41] Francois F B, Elizabeth A D, Stephanie C K , et al. An update on the signals controlling shoot branching. Trends in Plant Science, 2019,24(3):220-236.
[42] Gomez-Roldan V, Fermas S, Brewer P B , et al. Strigolactone inhibition of shoot branching. Nature, 2008,455(7210):189-194.
[43] Umehara M, Hanada A, Yoshida S , et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008,455(7210):195-200.
[44] Ashikari M . Cytokinin oxidase regulates rice grain production. Science, 2005,309(5735):741-745.
[45] 贾小涛 . 苦荞品种比较试验. 农业科技与信息,2018(6):23-25.
[46] 贾瑞玲, 成小刚, 刘杰英 , 等. 苦荞品种比较试验初报. 甘肃农业科技,2011(2):23-24.
[47] 万丽英 . 高海拔单作区不同密度对苦荞产量与品质影响的研究. 武汉:华中农业大学, 2007.
[48] 李月, 石桃雄, 黄凯丰 , 等. 苦荞生态因子及农艺性状与产量的相关分析. 西南农业学报, 2013,26(1):35-41.
[49] Franklin K A . Shade avoidance. New Phytologist, 2010,179(4):930-944.
[1] An Zhu,Jie Gao,Jian Huang,Hao Wang,Yun Chen,Lijun Liu. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice [J]. Crops, 2020, 36(2): 1-8.
[2] Xiaoyi Wei,Jiamu Wang,Yi Ma,Junfeng Ma,Defeng Hong,Feng Wei. Identification and Principal Component Analysis of Maize Combinations Suitable for Mechanical Grain Harvesting [J]. Crops, 2020, 36(2): 48-53.
[3] Shi Lü,Xue Yaguang,Wei Yafeng,Li Bo,Shi Xiaoxu,Liu Jian. Changes of Cooking and Eating Quality and Its Correlation with Mineral Element Content in Polished Rice under Different Nitrogen Grain Fertilizer Levels [J]. Crops, 2019, 35(6): 57-65.
[4] Li Jiming,Li Aiguo,Jia Yingquan,Song Congmin,Liu Guihua,Xu Guizhen,Li Heping. Effects of Plant Spacing on Growth and Yield of Oil Sunflower under Mechanized Cultivation Conditions [J]. Crops, 2019, 35(6): 71-75.
[5] Yang Tian,Zhang Yongqing,Dong Fuhui,Ma Xingxing,Xue Xiaojiao. Research on the Root Growth of Different Drought-Resistant Fagopyrum tataricum under Different Water Conditions [J]. Crops, 2019, 35(6): 76-82.
[6] Fan Liqin,Li Lei,Wu Xia. Effects of Different Planting Patterns for Oil Sunflower on Saline-Alkali Soil Temperature, Moisture and Electrical Conductivity in Northern Yinchuan Irrigation District [J]. Crops, 2019, 35(6): 127-133.
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower [J]. Crops, 2019, 35(5): 22-27.
[8] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province [J]. Crops, 2019, 35(5): 104-108.
[9] Wang Jian,Yao Dandan,Hao Ruxue,Yu Qingsong,Han Jinling,Zhou Yinfu,Wang Wenpo. Grain Filling Characteristics of Nine Main Spring Corn Varieties in Eastern Hebei Province [J]. Crops, 2019, 35(4): 120-124.
[10] Guo Qingrui,Wang Mengfei,Guo Fengqin,Yin Jianjun,Zhang Xiaojuan,Wang Li. Comprehensive Evaluation of Grain and Forage Maize Varieties in High Latitude and Cold Area of Shanxi Province [J]. Crops, 2019, 35(4): 61-68.
[11] Song Lifang,Feng Meichen,Zhang Meijun,Xiao Lujie,Wang Chao,Yang Wude,Song Xiaoyan. Effects of Exogenous Selenium on the Growth and Development of Tartary Buckwheat and Selenium Content in Grains [J]. Crops, 2019, 35(3): 150-154.
[12] Shi Yaxing,Dong Hui,Lu Baishan,Zhao Jiuran,Fan Yanli,Xu Li,Yu Ainian. Grain Dehydration and Gelatinization Characteristics of Waxy Maize at Different Harvesting Time [J]. Crops, 2019, 35(3): 112-117.
[13] Fu Jing,Sun Ningning,Liu Tianxue,Ma Junfeng,Yang Yulong,Zhao Xia,Mu Xinyuan,Li Chaohai. The Effects of High Temperature at Spike Stage on Grain-Filling Physiology and Yield of Maize [J]. Crops, 2019, 35(3): 118-125.
[14] Lu Shouping,Zhang Hua,Meng Zhaodong,Mu Chunhua. Improvement of Grain Oil Content in Maize Inbred Lines by Molecular Markering Technology [J]. Crops, 2019, 35(3): 24-28.
[15] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao [J]. Crops, 2019, 35(3): 37-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties[J]. Crops, 2018, 34(4): 79 -83 .
[2] . [J]. Crops, 1997, 13(6): 20 .
[3] . [J]. Crops, 1990, 6(2): 12 .
[4] . [J]. Crops, 1992, 8(3): 3 .
[5] . [J]. Crops, 1995, 11(4): 39 .
[6] . [J]. Crops, 1990, 6(2): 36 -38 .
[7] . [J]. Crops, 1990, 6(3): 16 -17 .
[8] . [J]. Crops, 1991, 7(3): 40 .
[9] . [J]. Crops, 1992, 8(3): 12 -13 .
[10] . [J]. Crops, 1992, 8(3): 20 -21 .