Crops ›› 2017, Vol. 33 ›› Issue (6): 65-71.doi: 10.16035/j.issn.1001-7283.2017.06.012

Previous Articles     Next Articles

Lodging Resistance Identification and Evaluation of Different Tartary Buckwheat Cultivars

Song Yue1,Xiang Dabing1,2,Huang Houbing1,Fan Yu1,Wei Shuang1,Zhang Sai1   

  1. 1School of Pharmacy and Bioengineering,Chengdu University,Chengdu 610106,Sichuan,China
    2Key Laboratory of Coarse Cereal Processing,Ministry of Agriculture,Chengdu 610106,Sichuan,China
  • Received:2017-08-22 Revised:2017-11-07 Online:2017-12-15 Published:2018-08-26
  • Contact: Dabing Xiang

Abstract:

Twenty tartary buckwheat cultivars were used to study the difference in lodging resistance and evaluation method. The result showed that these varieties were divided into five types by systematic cluster analysis method based on the difference of their lodging rate, three varieties was strong lodging resistance type, six varieties were high lodging resistance type, six varieties were medium lodging resistance type, three varieties were sensitive type and two varieties were highly sensitive type. Correlation analysis showed that the second internode length was significantly positively correlated with lodging rate, and the correlation coefficient was 0.455. The culm lodging resistance index, puncture strength and dry matter weight of cotyledonary internode, mechanical strength of the first and the second internodes, lignin and cellulose content of stem were significantly negatively correlated with lodging rate, and the correlation coefficient were -0.936, -0.453, -0.453, -0.509, -0.510, -0.529 and -0.709, respectively. So, the second internode, culm lodging resistance index, puncture strength and dry matter weight of cotyledonary internode, mechanical strength of the first and the second internodes, lignin and cellulose content of stem could be employed as the main parameters to evaluate the lodging resistance of tartary buckwheat.

Key words: Tartary buckwheat, Culm lodging-resistance index, Lodging resistance, Evaluation method

Table 1

The varieties and the sources"

品种Variety 来源Source
川荞1号
Chuanqiao1
四川凉山州西昌农业科学研究所高山作物
研究站
川荞2号
Chuanqiao2
四川凉山州西昌农业科学研究所高山作物
研究站
云荞1号Yunqiao1 云南省农业科学院生物技术与种质资源研究所
云荞2号Yunqiao2 云南省农业科学院生物技术与种质资源研究所
西荞1号Xiqiao1 四川成都大学农业部杂粮加工重点实验室
西荞3号Xiqiao3 四川西昌农业高等专科学校
晋荞麦(苦)2号Jinqiao2 山西省农业科学院小杂粮研究中心
晋荞麦(苦)6号Jinqiao6 山西省农业科学院高寒区作物研究所
滇宁1号Dianning1 云南省农业科学院农作物品种资源站
黑丰1号Heifeng1 山西省农业科学院农作物品种资源研究所
米荞1号Miqiao1 四川省成都大学农业部杂粮加工重点实验室
六苦3号Liuku3 贵州省六盘水市农业科学研究所
黔苦5号Qianku5 贵州省威宁县农业科学研究所
额吉苦荞
Eji Buckwheat
四川省凉山州美姑县本地品种
九江苦荞
Jiujiang Buckwheat
江西省吉安市农业科学研究所
凤凰苦荞
Fenghuang Buckwheat
湖南省经济作物发展中心
云南花苦
Yunnanhuaku
云南省农业科学院生物技术与种质资源研究所
通辽苦荞
Tongliao Buckwheat
贵州植物遗传育种研究所
海子鸽苦荞
Haizige Buckwheat
贵州植物遗传育种研究所
大安本苦荞
Daanben Buckwheat
贵州植物遗传育种研究所

Table 2

The lodging rate and culm lodging-resistance index of all the buckwheat varieties"

品种
Variety
倒伏率(%)
Lodging rate
茎秆抗倒指数(N/cm)
Culm lodging resistance index
云荞2号 12.60k 2.568a
凤凰苦荞 13.00k 2.566a
川荞1号 14.00k 2.540ab
西荞1号 15.16jk 2.322abc
米荞1号 15.18jk 2.305abc
云荞1号 15.42ijk 2.302abc
西荞3号 16.12hijk 2.309abc
滇宁1号 17.34hijk 2.283abc
晋荞麦(苦)6号 17.80ghijk 2.282abc
六苦3号 20.18fghij 2.029bcde
云南花苦 20.34fghij 2.038bcd
川荞2号 20.82fghij 2.061abcd
黔苦5号 21.48efgh 2.020bcde
九江苦荞 23.04efg 2.030bcde
通辽苦荞 24.58def 2.028bcde
晋荞麦(苦)2号 26.76cde 1.808cde
黑丰1号 28.66cd 1.802cde
海子鸽苦荞 30.54bc 1.802cde
额吉苦荞 35.92b 1.590de
大安本苦荞 47.12a 1.504e

Fig.1

Clustering analysis"

Table 3

The correlation coefficient matrix between agronomic traits and lodging resistance"

指标Index LR CLRI H GH LI0 LI1 LI2 LI3 DI0 DI1 DI2 DI3 SDW LDW DWI0 DWI1 DWI2 DWI3
LR 1 -0.936** -0.297 -0.192 -0.012 -0.362 -0.455* 0.350 -0.133 0.013 0.230 -0.260 -0.299 -0.169 -0.453* -0.311 -0.311 -0.295
CLRI -1 -0.343 -0.243 -0.057 -0.362 -0.447* -0.337 0.325 0.273 0.038 -0.044 0.437 0.277 0.579** 0.386 0.435 0.369
H -1 -0.890** -0.472* -0.739** -0.636** 0.582** 0.450* 0.387 0.463* -0.578* 0.554* 0.328 0.735** 0.759** 0.813** 0.725**
GH -1 -0.509* -0.834** -0.767** 0.664** 0.514* 0.406 0.511* -0.665** 0.540* 0.371 0.680** 0.893** 0.892** 0.829**
LI0 -1 -0.647** -0.546* 0.728** 0.177 0.142 0.175 -0.377 0.168 -0.004 0.475* 0.323 0.393 0.463*
LI1 -1 -0.883** 0.828** 0.356 0.306 0.329 -0.460* 0.349 0.196 0.547* 0.821** 0.826** 0.796**
LI2 -1 0.895** 0.207 0.284 0.306 -0.474* 0.186 0.086 0.345 0.802** 0.823** 0.804**
LI3 1 0.132 0.202 0.200 -0.411 0.039 -0.118 0.289 0.611** 0.644** 0.635**
DI0 1 0.856** 0.821** -0.820** 0.752** 0.723** 0.750** 0.492* 0.431 0.395
DI1 1 0.864** -0.849** 0.493* 0.441 0.536* 0.430 0.359 0.352
DI2 1 -0.884** 0.590** 0.571** 0.626** 0.535* 0.480* 0.451*
DI3 -1 0.611** 0.534* 0.699** 0.642** 0.597** 0.603**
SDW 1 0.942** 0.912** 0.588** 0.629** 0.618**
LDW 1 0.780** 0.472* 0.504* 0.503*
DWI0 1 0.640** 0.696** 0.682**
DWI1 1 0.966** 0.929**
DWI2 1 0.962**
DWI3 1

Table 4

The correlation coefficient between physical character and lodging resistance"

指标Index M0 M1 M2 M3 P0 P1 P2 P3
LR -0.401 -0.509* -0.510* -0.348 -0.453* -0.164 -0.162 -0.060
CLRI 0.388 0.490* 0.457* 0.274 0.375 0.142 0.097 -0.027
H 0.403 0.418 0.396 0.443 0.245 0.113 0.299 0.099
GH 0.450* 0.498* 0.446* 0.436 0.084 -0.074 0.138 -0.089
LI0 0.191 0.300 0.236 0128 -0.033 -0.249 -0.234 -0.426
LI1 0.290 0.318 0.318 0.226 -0.103 -0.277 -0.065 -0.296
LI2 0.049 0.080 0.036 0.028 -0.321 -0.393 -0.222 -0.456*
LI3 -0.012 0.079 -0.031 -0.085 -0.348 -0.466* -0.391 -0.542*
DI0 0.854** 0.821** 0.801** 0.820** 0.564* 0.306 0.561* 0.078
DI1 -0.601** 0.613** 0.519* 0.551* 0.302 0.081 0.317 -0.068
DI2 0.602** 0.563** 0.505** 0.579** 0.343 0.190 0.383 0.076
DI3 0.658** 0.685** 0.591** 0.607** 0.214 0.059 0.251 -0.133
SDW 0.732** 0.612** 0.700** 0.821** 0.699** 0.609** 0.792** 0.412
LDW 0.731** 0.566** 0.699** 0.812** 0.667** 0.610** 0.788** 0.380
DWI0 0.761** 0.702** 0.749** 0.832** 0.644** 0.472* 0.644** 0.275
DWI1 0.360 0.340 0.311 0.405 0.056 0.016 0.228 0.022
DWI2 0.338 0.295 0.311 0.405 0.096 0.062 0.248 0.031
DWI3 0.328 0.300 0.307 0.369 0.075 0.015 0.195 -0.018

Table 5

The correlation coefficient between physiological index and lodging resistance"

指标
Index
可溶性糖含量
Soluble sugar content
木质素含量
Lignin content
纤维素含量
Cellulose content
LR -0.195 -0.709** -0.529*
CLRI -0.125 0.637** 0.524*
H -0.231 0.291 0.318
GH -0.297 0.168 0.446*
LI0 -0.620** 0.201 0.609**
LI1 -0.337 0.073 0.500*
LI2 -0.102 -0.227 0.371
LI3 -0.277 -0.115 0.550*
DI0 -0.567** 0.400 0.347
DI1 -0.441 0.403 0.291
DI2 -0.370 0.319 0.169
DI3 -0.409 0.260 0.347
SDW -0.250 0.232 -0.069
LDW -0.153 0.061 -0.184
DWI0 -0.467* 0.389 0.211
DWI1 -0.100 0.041 0.184
DWI2 -0.062 -0.027 0.134
DWI3 -0.082 -0.010 0.106
M0 -0.503* 0.382 0.330
M1 -0.617** 0.501* 0.526*
M2 -0.584** 0.411 0.407
M3 -0.446* 0.399 0.182
P0 -0.347 0.469* -0.117
P1 -0.044 0.246 -0.422
P2 -0.100 0.302 -0.324
P3 -0.228 0.291 -0.577**
[1] 赵钢, 唐宇, 王安虎 , 等. 苦荞的成分功能研究与开发应用. 四川农业大学学报, 2001,19(4):355-358,368.
doi: 10.3969/j.issn.1000-2650.2001.04.010
[2] 韦爽 . 不同苦荞品种植株性状与抗倒伏的关系研究. 贵阳:贵州师范大学, 2015: 2-6.
[3] 杨波, 杨文钰 . 水稻抗倒伏研究进展.耕作与栽培, 2011(2):1-5,9.
doi: 10.3969/j.issn.1008-2239.2011.02.001
[4] 李荣田, 姜廷波, 秋太权 , 等. 水稻倒伏对产量影响及倒伏和株高关系的研究.黑龙江农业科学, 1996(1):13-17.
[5] 张忠旭, 陈温福, 杨振玉 , 等. 水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响.沈阳农业大学学报, 1999(2):81-85.
[6] 王健 . 抗倒伏小麦茎秆结构、化学特征及快速筛选的方法学研究. 福州:福建师范大学, 2006: 7-14.
[7] 王勇, 李晴祺 . 小麦品种抗倒性评价方法研究. 华北农学报, 1995,10(3):84-88.
doi: 10.3321/j.issn:1000-7091.1995.03.018
[8] 刘唐兴, 官春云, 雷冬阳 . 作物抗倒伏的评价方法研究进展. 中国农学通报, 2007,23(5):203-206.
doi: 10.3969/j.issn.1000-6850.2007.05.046
[9] 陈新军, 戚存扣, 蒲惠明 , 等. 甘蓝型油菜抗倒性评价及抗倒性与株型结构的关系. 中国油料作物学报, 2007,29(1):54-57.
doi: 10.3321/j.issn:1007-9084.2007.01.011
[10] 孙晓燕, 蔡昌利, 徐丽莉 , 等. 多糖含量测定方法的比较. 现代中药研究与实践, 2015,29(3):58-62.
[11] 王林风, 程远超 . 硝酸乙醇法测定纤维素含量.化学研究, 2011(4):52-55.
doi: 10.3969/j.issn.1008-1011.2011.04.013
[12] 江林 . 小麦木质素含量与茎秆强度的关系. 合肥:安徽农业大学, 2013: 10-12.
[13] 李金才, 尹钧, 魏凤珍 , 等. 播种密度对冬小麦茎秆形态特征和抗倒指数的影响. 作物学报, 2005,31(5):662-667.
[14] 何中虎, 张树榛, 刘录祥 . 小麦矮秆育种中性状间关系的多元分析. 华北农学报, 1992,7(1):1-7.
doi: 10.3321/j.issn:1000-7091.1992.01.001
[15] Hayashi H, Toiguchi D, Wang Y , et al. Plant Characteristics in Relation to Lodging in Self-Pollinating Buckwheat. Tokyo:Bulletin of Agricultural & Forestry Research Center University of Tsukuba, 2009: 21-32.
[16] 周广生, 梅方竹, 周竹青 , 等. 小麦不同品种耐湿性生理指标综合评价及其预测. 中国农业科学, 2003,36(11):1378-1382.
[17] 王勇, 李斯深, 李安飞 , 等. 小麦种质抗倒性的评价和抗倒性状的相关与通径分析. 西北植物学报, 2000,20(1):79-85.
[18] 汪灿, 阮仁武, 袁晓辉 , 等. 不同荞麦品种抗倒伏能力与根系及茎秆性状的关系. 西南大学学报(自然科学版), 2015,37(1):65-71.
[19] 张志才 . 作物倒伏成因分析及抗倒对策研究进展.耕作与栽培, 2006(4):1-2,26.
[20] 杨惠杰, 杨仁崔, 李义珍 , 等. 水稻茎秆性状与抗倒性的关系. 福建农业学报, 2000,15(2):1-7.
[21] 李得孝, 员海燕, 周联东 . 玉米抗倒伏性指标及其模拟研究.西北农林科技大学学报, 2004(5):53-56.
[22] 闵东红, 王辉, 孟超敏 , 等. 不同株高小麦品种抗倒伏性与其亚性状及产量相关性研究. 麦类作物学报, 2001,21(4):76-79.
doi: 10.7606/j.issn.1009-1041.2001.04.108
[23] 黄玉鸾, 陈秀瑾, 张继林 , 等. 小麦倒伏的形态生理因素及抗倒技术.江苏农业科学, 1988(10):5-8,11.
[24] 向达兵, 李静, 范昱 , 等. 种植密度对苦荞麦抗倒伏特性及产量的影响. 中国农学通报, 2014,30(6):242-247.
[25] 董琦, 王爱萍, 梁素明 . 小麦基部茎节形态结构特征与抗倒性的研究. 山西农业大学学报(自然科学版), 2003,23(3):188-191.
[26] 安呈峰 . 高产小麦发育后期基部节间与倒伏的关系. 泰安:山东农业大学, 2008: 30-44.
[27] 陈有军, 周青平, 孙建 , 等. 不同燕麦品种田间倒伏性状研究.作物杂志, 2016(5):44-49.
doi: 10.16035/j.issn.1001-7283.2016.05.008
[28] Baucher M, Monties B, Van Montagu M , et al. Biosynthesis and genetic engineer in lignin. Critical Review Plant Science, 1998,17:125-197.
doi: 10.1080/07352689891304203
[29] 陈晓光, 史春余, 尹燕枰 , 等. 小麦茎秆木质素代谢及其与抗倒性的关系. 作物学报, 2011,37(9):1616-1622.
doi: 10.3724/SP.J.1006.2011.01616
[30] 田保明, 杨光圣, 曹刚强 , 等. 农作物倒伏及其影响因素分析. 中国农学通报, 2006,22(4):163-167.
[31] 李召锋, 杨茂深, 周英 , 等. 滴灌春小麦蜡熟期抗倒性综合评价. 分子植物育种, 2017,15(8):3199-3209.
[32] 张龙龙, 杨明明, 董剑 , 等. 三个小麦新品种不同生育阶段抗旱性的综合评价. 麦类作物学报, 2016,36(4):426-434.
[33] 张婷婷, 于崧, 于立河 , 等. 松嫩平原春小麦耐盐碱性鉴定及品种(系)筛选. 麦类作物学报, 2016,36(8):1008-1019.
doi: 10.7606/j.issn.1009-1041.2016.08.06
[34] 马霓, 李玲, 徐军 , 等. 甘蓝型油菜抗倒伏性及农艺性状研究.作物杂志, 2010(6):36-41.
[1] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops [J]. Crops, 2018, 34(4): 13-19.
[2] Haiyan Liang, Hai Li, Fengxian Lin, Xiangyu Zhang, Zhi Zhang, Xiaoqiang Song. Field Identification of Different Broom Corn Millet Varieties Lodging Resistance and Evaluation Index Selection and Analysis [J]. Crops, 2018, 34(4): 37-41.
[3] Yu Fan,Hongli Wang,Feng He,Dili Lai,Jiajun Wang,Yue Song,Dabing Xiang. Nutritional Quality in Seeds of Tartary Buckwheat Affected by After-Ripening [J]. Crops, 2018, 34(1): 96-101.
[4] Yulin Han,Guihong Yin,Guangyu Yang,Jianwei Tang,Lina Wang,Feng Huang,Qian Zhang,Nannan Li,Yongjun Lü,Shuncheng Li,Shaokui Zou,Yan Gao. Relation of the Stem Characters and Lodging Resistance of Zhoumai 22 [J]. Crops, 2017, 33(2): 34-37.
[5] Xiushi Yang,Zhongxian Guo,Huimin Guo,Hui Wang,Sancai Liu. Effects of Sowing Date and Seeding Density on the Yield and Quality of Buckwheat [J]. Crops, 2017, 33(1): 88-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .