Crops ›› 2019, Vol. 35 ›› Issue (6): 76-82.doi: 10.16035/j.issn.1001-7283.2019.06.012

Previous Articles     Next Articles

Research on the Root Growth of Different Drought-Resistant Fagopyrum tataricum under Different Water Conditions

Yang Tian1,Zhang Yongqing1,2,Dong Fuhui1,Ma Xingxing2,Xue Xiaojiao1   

  1. 1School of Life Science, Shanxi Normal University, Linfen 041004, Shanxi, China
    2College of Geographical Sciences, Shanxi Normal University, Linfen 041004, Shanxi, China
  • Received:2019-04-19 Revised:2019-06-22 Online:2019-12-15 Published:2019-12-11
  • Contact: Yongqing Zhang

Abstract:

The purpose of this study was to find out the relationship between root morphology and physiology and drought resistance of Fagopyrum tataricum, to provide a theoretical basis for high-yield and high-quality cultivation and management and selection of drought-resistant varieties of Fagopyrum tataricum. The method of artificial water-control was adopted. Quantitative indices of root growth for different drought-resistant Fagopyrum tataricum varieties (Diqing tartary buckwheat and Heifeng 1) under normal water supply and severe drought were determined and analyzed, during which the change of root growth of Fagopyrum tataricum was simulated. Results showed that, root-shoot ratio, the contents of malonaldehyde (MDA) and proline (Pro) increase significantly under the drought stress condition, while maximum root length, root volume and root surface area showed adecreasing significantly. Under different water conditions, the root-shoot ratio of Fagopyrum tataricum decreased, the maximum root length, root volume and root surface area increased, MDA content increased, and Pro content increased first and then decreased with the development of growth period. The results of variances analysis showed that under severe drought stress, root-shoot ratio, maximum root length, root volume, root surface area and root Pro content of Diqing tartary buckwheat were significantly higher than Heifeng 1, and MDA content was significantly lower than Heifeng 1. By establishing regression analysis equation, it can be concluded that the mathematical models of root surface area and maximum root length treated with different treatments were the same during the whole growth period, and they all conformed to the exponential model, while the indexes of root volume and MDA content conformed to the unitary quadratic equation. Under drought stress, the growth of the roots and aerial parts of Tartary buckwheat was inhibited, and the effects on the shoots were greater than those of the roots. Compared with Heifeng 1, Diqing tartary buckwheat has stronger drought tolerance.

Key words: Drought stress, Tartary buckwheat, Root morphology, Physiological index, Mathematical model

Fig.1

Changes of root surface area of different treatments Different lowercase letters indicate significant difference at 5% level of probability for the same variety in different treatments during the same period. Different capital letters indicate significant difference at 5% level of probability among different varieties in same treatments. The same below"

Fig.2

Changes of root volume of different treatments"

Fig.3

Changes of maximum root length of different treatments"

Fig.4

Changes of root-shoot ratio of different treatments"

Table 1

Effects of different water conditions on MDA content of different tartary buckwheat varieties nmol/gFM"

取样日期(月/日)
Sampling date
(Month/day)
迪庆苦荞Diqing tartary buckwheat 黑丰1号Heifeng 1
正常供水
Normal water supply
重度干旱胁迫
Severe drought stress
正常供水
Normal water supply
重度干旱胁迫
Severe drought stress
6/4 6.20±0.95Bb 7.54±0.12Ba 6.81±0.45Ab 9.12±1.59Aa
6/14 7.18±0.29Bb 8.12±0.10Ba 7.55±0.30Ab 9.59±0.07Aa
6/24 7.98±0.39Bb 9.81±0.21Ba 8.16±0.23Ab 11.32±0.50Aa
7/4 8.44±0.91Bb 12.66±0.20Ba 9.71±0.15Ab 15.40±0.79Aa
7/14 9.57±0.42Bb 14.54±0.37Ba 10.50±0.31Ab 18.65±0.58Aa
7/24 11.53±0.50Bb 15.70±0.44Ba 13.76±0.18Ab 21.11±0.94Aa
8/4 12.85±0.72Bb 16.59±0.14Ba 14.88±0.28Ab 22.07±0.68Aa
8/14 13.78±0.53Bb 17.27±0.29Ba 15.59±0.53Ab 22.67±0.76Aa

Table 2

Effects of different water conditions on Pro content of different tartary buckwheat varieties μg/gFM"

取样日期(月/日)
Sampling date
(Month/day)
迪庆苦荞Diqing tartary buckwheat 黑丰1号Heifeng 1
正常供水
Normal water supply
重度干旱胁迫
Severe drought stress
正常供水
Normal water supply
重度干旱胁迫
Severe drought stress
6/4 23.26±0.39Ab 26.39±0.96Aa 23.53±1.01Ab 25.33±0.93Ba
6/14 26.36±0.49Ab 28.78±1.56Aa 25.03±0.84Bb 27.47±1.09Ba
6/24 28.70±0.40Ab 37.25±1.07Aa 27.14±0.92Bb 29.89±0.97Ba
7/4 31.82±0.59Ab 48.83±1.25Aa 29.71±1.21Bb 37.33±1.26Ba
7/14 36.24±0.67Ab 58.77±0.98Aa 32.49±0.98Bb 46.01±0.99Ba
7/24 39.91±0.58Ab 60.99±1.12Aa 30.60±1.32Bb 43.72±1.90Ba
8/4 36.48±0.99Ab 54.30±0.97Aa 27.53±1.01Bb 38.02±1.24Ba
8/14 33.49±1.01Ab 49.80±0.89Aa 26.30±1.22Bb 37.79±0.91Ba
[1] 张雄, 王立祥 . 小杂粮在黄土高原旱作农业中的地位和作用. 西北农业学报, 2008,17(5):333-336.
[2] 张思祖 . 黄土高原沟壑区经济林地土壤水分特征研究. 杨凌:西北农林科技大学, 2011.
[3] Fang Y, Xiong L . General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 2015,72(4):673-689.
doi: 10.1007/s00018-014-1767-0 pmid: 25336153
[4] 郎桂常 . 苦荞麦的营养价值及其开发应用. 中国粮油学报,1996(3):9-14.
[5] Huang K F, Shi Z, Song Y X , et al. Research on variation in sucrose content among different tartary buckwheat genotypes. Agricultural Science and Technology, 2011,12(2):211-213.
[6] 李世贵 . 荞麦对环境条件的要求及其高产栽培技术. 现代农业科技, 2007( 21): 136, 138.
[7] 田秀红, 任涛 . 苦荞麦的营养保健作用与开发利用. 中国食物与营养,2007(10):44-45.
[8] 左光明 . 苦荞主要营养功能成分关键利用技术研究. 贵阳:贵州大学食品科学系, 2009.
[9] 赵刚, 唐宇, 马荣 . 苦荞麦的营养和药用价值及其开发应用. 农牧产品开发,1999(7):17-18.
[10] 徐笑宇, 方正武, 杨璞 , 等. 苦荞遗传多样性分析与核心种质筛选. 干旱地区农业研究, 2015,33(1):268-277.
[11] 汪灿, 胡丹, 杨浩 , 等. 苦荞主要农艺性状与产量关系的多重分析. 作物杂志,2013(6):18-22.
[12] 赵刚, 唐宇, 王安虎 . 苦荞的成分功能研究与开发利用. 四川农业大学学报, 2001,12(4):355-358.
[13] 张楚, 张永清, 路之娟 , 等. 低氮胁迫对不同苦荞品种苗期生长和根系生理特征的影响. 西北植物学报, 2017,37(7):1331-1339.
[14] 杨再强, 邱译萱, 刘朝霞 , 等. 土壤水分胁迫对设施番茄根系及地上部生长的影响. 生态学报, 2016,36(3):748-757.
doi: 10.5846/stxb201403310606
[15] 梁银丽, 陈培元 . 土壤水分和磷营养对小麦根系生长生理特性的影响. 西北植物学报, 1994,14(5):56-60.
[16] 张永清, 苗果园 . 水分胁迫条件下有机肥对小麦根苗生长的影响. 作物学报, 2006,32(6):811-816.
[17] 张永清 . 几种谷类作物根土系统的研究. 晋中:山西农业大学, 2005.
[18] 张志良, 瞿伟菁, 李小方 . 植物生理实验指导(第4版). 北京: 高等教育出版社, 2009.
[19] Wang S M, Wan C G, Wang Y R , et al. The characteristics of Na +,K + and free proline distribution in several drought-resistant plants of the Alxa Desert,China . Journal of Arid Environments, 2004,56(3):525-539.
doi: 10.1016/S0140-1963(03)00063-6
[20] 苗果园, 高志强, 张云亭 , 等. 水肥对小麦根系整体影响及其与地上部相关的研究. 作物学报, 2002,28(4):445-450.
[21] 高海峰, 李小明, 张海波 , 等. 几种旱生植物地上部生长的节律及其变化. 干旱区研究,1985(1):59-64.
[22] 张翠梅, 师尚礼, 吴芳 . 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018,51(5):868-882.
doi: 10.3864/j.issn.0578-1752.2018.05.006
[23] 揭雨成, 黄丕生, 李宗道 . 干旱胁迫下苎麻的生理生化变化与抗旱性的关系. 中国农业科学,2000(6):33-39.
[24] 路之娟, 张永清, 张楚 . 干旱胁迫对不同苦荞品种苗期生长和生理特征的影响. 西北植物学报, 2018,38(1):112-120.
[25] 关军锋, 马春红, 李广敏 . 干旱胁迫下小麦根冠生物量变化及其与抗旱性的关系. 河北农业大学学报,2004(1):1-5.
[26] 路之娟, 张永清, 张楚 , 等. 不同基因型苦荞苗期抗旱性综合评价及指标筛选. 中国农业科学, 2017,50(17):3311-3322.
doi: 10.3864/j.issn.0578-1752.2017.17.006
[27] 杨连新, 王余龙, 黄建晔 , 等. 扬稻6号谷壳生长动态及其影响因素的研究. 作物学报, 2003,29(6):853-859.
[1] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels [J]. Crops, 2019, 35(5): 28-36.
[2] Gu Jiaojiao,Hu Bowen,Jia Yan,Sha Hanjing,Li Jingwei,Ma Chao,Zhao Hongwei. Effects of Salt Stress on Root Related Traits and Yield of Rice [J]. Crops, 2019, 35(4): 176-182.
[3] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao [J]. Crops, 2019, 35(3): 37-41.
[4] Song Lifang,Feng Meichen,Zhang Meijun,Xiao Lujie,Wang Chao,Yang Wude,Song Xiaoyan. Effects of Exogenous Selenium on the Growth and Development of Tartary Buckwheat and Selenium Content in Grains [J]. Crops, 2019, 35(3): 150-154.
[5] Yasong Cui, Yan Wang, Lijuan Yang, Chaoxin Wu, Piao Zhou, Pan Ran, Qingfu Chen. Genetic Analysis of Fruit Hull Rate and Related Traits on Tartary Buckwheat [J]. Crops, 2019, 35(2): 51-60.
[6] Riyu Wen,Jianxia Liu,Zhenhua Zhang,Yaodong Guo,Xuyao Dai,Qingguo Jiang,Lisheng Fan. Effects of Drought Stress on Germination and Physiological Characteristics of Different Quinoa Seeds [J]. Crops, 2019, 35(1): 121-126.
[7] Xia Wu,Deguo Lü,Guodong Du,Fengjun Yang. Cold Resistance Physiology Variance Analysis in Grafting and Tissue Culturing Seedlings of Sweet Cherry [J]. Crops, 2019, 35(1): 168-174.
[8] Xiaoyong Zhang,Youlian Yang,Shujiang Li,Rongchuan Xiong,Hong Xiang. Effects of Exogenous GA3 and 6-BA on Leaf Senescence in Low Temperature Stress of Virus-Free Potato Cutting Seedlings [J]. Crops, 2018, 34(4): 95-101.
[9] Jingwen Fang,Yan Wu,Zhihua Liu. Effects of Salt Stress on Seed Germination and Physiological Characteristics of Apocynum venetum [J]. Crops, 2018, 34(4): 167-174.
[10] Jiao Zhang,Qi Wu,Yufei Zhou,Yitao Wang,Ruidong Zhang,Ruidong Huang. Effects of Drought and Rewatering at Seedling and Filling Stages on Photosynthetic Characteristics and Dry Matter Production of Sorghum [J]. Crops, 2018, 34(3): 148-154.
[11] Yu Fan,Hongli Wang,Feng He,Dili Lai,Jiajun Wang,Yue Song,Dabing Xiang. Nutritional Quality in Seeds of Tartary Buckwheat Affected by After-Ripening [J]. Crops, 2018, 34(1): 96-101.
[12] Yue Song,Dabing Xiang,Houbing Huang,Yu Fan,Shuang Wei,Sai Zhang. Lodging Resistance Identification and Evaluation of Different Tartary Buckwheat Cultivars [J]. Crops, 2017, 33(6): 65-71.
[13] Guolong Li,Yaqing Sun,Shiqin Shao,Yongfeng Zhang. Response of Antioxidant System to Drought Stress in Sugar Beet Leaves at Seedling Stage [J]. Crops, 2017, 33(5): 73-79.
[14] Ning Yang,Botong Zhao,Yuzhuo Bao,Yan Lü,Kankan Peng,Yu Tian,Junhong Wang,Jing Meng,Jing Cang. Effects of Exogenous ABA and Its Inhibitor Fluridone on Cold Resistance Indicators of Winter Wheat Tiller Node [J]. Crops, 2017, 33(4): 117-122.
[15] ,Lili Zhang,Ying Shi. Screening of Drought Resistant Germplasm Resources in Potato [J]. Crops, 2017, 33(4): 72-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[3] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[4] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[5] Cao Tingjie,Zhang Yu’e,Hu Weiguo,Yang Jian,Zhao Hong,Wang Xicheng,Zhou Yanjie,Zhao Qunyou,Li Huiqun. Detection of Three Dwarfing Genes in the New Wheat Cultivars (Lines) Developed in South Huang-Huai Valley and Its Association with Agronomic Traits[J]. Crops, 2019, 35(6): 14 -19 .
[6] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .